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RESEARCH QUESTIONS
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EXPERIMENT 1: FINE-TUNING SPEECH FOUNDATION MODEL
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 To improve robustness, an augmentation layer by convolving the audio with impulse responses (IRs)
obtained from The MIT McDermott dataset [4] (271 IRs recorded in various everyday locations).

J Limitation: Original model was trained on 16 kHz dataset - a significant loss at higher frequencies.

EXPERIMENT 2: LINGUISTIC AND ACOUSTIC CUES INTEGRATION
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