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Abstract
Recent advancements in speech enhancement techniques

have ignited interest in improving speech quality and intelli-
gibility. However, the effectiveness of recently proposed meth-
ods is unclear. In this paper, a comprehensive analysis of mod-
ern deep learning-based speech enhancement approaches is pre-
sented. Through evaluations using the Deep Suppression Noise
and Clarity Enhancement Challenge datasets, we assess the per-
formances of three methods: Denoiser, DeepFilterNet3, and
FullSubNet+. Our findings reveal nuanced performance dif-
ferences among these methods, with varying efficacy across
datasets. While objective metrics offer valuable insights, they
struggle to represent complex scenarios with multiple noise
sources. Leveraging ASR-based methods for these scenarios
shows promise but may induce critical hallucination effects.
Our study emphasizes the need for ongoing research to refine
techniques for diverse real-world environments.
Index Terms: speech enhancement, Whisper, objective met-
rics, deep noise suppression, Clarity challenge

1. Introduction
The development of machine learning approaches and the avail-
ability of large-scale datasets enable more sophisticated mod-
elling of speech and noise characteristics, leading to improved
noise reduction and speech intelligibility. As a result, contem-
porary speech enhancement systems exhibit unprecedented lev-
els of performance and adaptability to diverse application do-
mains, such as telecommunications, voice assistants, hearing
aids, and audio-visual communication [1].

Recent studies on objective evaluation are pivotal in ad-
vancing speech enhancement by quantitatively measuring im-
provements in speech quality [2], noise reduction [3], and intel-
ligibility [4, 5], facilitating the development of more effective
speech enhancement techniques. Three categories of objective
evaluation methods: conventional feature-based methods, data-
driven methods, and neurophysiological methods, can be used
to compare different enhancement performances to a certain de-
gree [6]. However, research has shown that these metrics are
insufficient and sometimes inconsistent, especially when han-
dling noisy environments [7].

In recent years, automatic speech recognition (ASR)-based
methods have demonstrated superior accuracy in speech intel-
ligibility prediction compared to other approaches, particularly
in noisy conditions [5, 6, 8]. Numerous studies employing var-
ious deep learning techniques and datasets have consistently
highlighted the enhanced performance of ASR-based methods
[5, 9]. Notably, approaches leveraging state-of-the-art Whis-
per models [10] trained on extensive multilingual and multi-
task datasets, totalling 680k hours of training, have exhibited

promising accuracy and efficacy in speech intelligibility predic-
tion, even in challenging acoustic environments [11, 12]. Re-
cent research on listening tests with English speakers evaluat-
ing non-native talkers also found that Whisper can accurately
mirror human listener intelligibility prediction [8].

However, the inherent black-box nature of deep learning-
based methodologies limits our understanding to mere accu-
racy improvements. Recognizing the limitations of ASR-based
techniques is crucial, as is devising strategies to optimize their
utility. Karbasi noted ASR’s challenges in comprehending
speech in reverberant environments, especially amidst back-
ground noise from concurrent conversations [5]. Additionally,
Koenecke et al. reported harms caused by hallucination phe-
nomena associated with the Whisper model [13]. These chal-
lenges must be addressed to harness the full potential of ASR-
based methodologies.

This paper provides a comprehensive assessment of recent
speech enhancement methods, focusing on their advantages and
constraints in mismatches across tasks. To accomplish this goal,
we introduce Beep-PER, which assesses phoneme-level errors
between predicted transcripts of both original and enhanced
speech using an ASR system. In our experiments, we utilize
established datasets for speech enhancement tasks and employ
cutting-edge speech enhancement methods. Furthermore, we
discuss the potential and limitations of ASR-based objective
evaluation methods, informed by our experimental results.

Our paper contributes to the understanding of the follow-
ing research questions: (1) How do recent deep learning-based
speech enhancement methods perform in cross-challenge eval-
uations? (2) What are the strengths and limitations of objective
metrics in assessing speech enhancement methods in challeng-
ing environments? (3) How applicable are these techniques in
real-world scenarios, specifically domains such as hearing aids?
This comprehensive exploration aims to advance our knowledge
in the field and guide future research endeavours.

2. ASR-based Objective Evaluation
The word error rate (WER) is commonly employed to assess au-
tomatic speech recognition (ASR) systems, yet it is not directly
utilized for evaluating speech enhancement methods. The WER
quantifies the discrepancy between the recognized text and the
reference transcript and is calculated as follows.

WER =
(I +D + S)

N
× 100 (1)

where I denotes the insertions, D denotes the deletions, S de-
notes substitutions, and N denotes the total number of words in
the reference speech.

The WER has several limitations. For example, it requires
a reference transcript, considers only words, so the noise impact
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Figure 1: Experimental pipeline for evaluating real-time deep
learning-based speech enhancement. Three methods were em-
ployed: Denoiser, DeepFilterNet3, and FullSubNet+. A cross-
corpus evaluation was conducted using the CEC2 and DNS
datasets, both with and without fine-tuning. We analysed the
enhanced speech signal outputs using the PESQ, STOI, WER,
and Beep-PER metrics.

on recognition is unclear, and cannot gauge the naturalness of
enhanced speech. To address the first limitation, various meth-
ods have been proposed to estimate the WER [14] or introduce
alternative metrics within the ASR framework [5]. Although
WER may not be the perfect gauge for speech enhancement,
recent studies have shown that ASR-based methods are more
effective for predicting speech intelligibility than are traditional
metrics such as short-time objective intelligibility (STOI) [15].

In this study, we focus on speech recognition in noisy en-
vironments. We specifically investigate phoneme-level recogni-
tion errors using Whisper, a cutting-edge ASR system. We as-
sess recent speech enhancement techniques using objective met-
rics and introduce a new metric, the Beep dictionary Phoneme-
level Error Rate (Beep-PER). The phoneme-level error rate
(PER) offers clear advantages over WER for evaluating ASR
systems [16]. PER is especially valuable in early development
stages or under challenging conditions, and it helps pinpoint
pronunciation issues with greater precision. By assessing sys-
tems at the phoneme level, we gain insights into their perfor-
mance, particularly in noisy environments where word bound-
aries may be unclear.

The Beep dictionary1, which primarily serves as a pro-
nunciation resource, incorporates data from the Oxford Text
Archive releases 710 and 1054, copyrighted by Oxford Univer-
sity Press and the Medical Research Council. We employed the
Beep dictionary to parse phoneme-level tokens of recognized
words after conducting some standard transformations, such
as lower-casing words and removing exceeding white spaces
& punctuation. We then calculated the WER based on these
phoneme-level tokens. The WER can surpass 100% [17], sug-
gesting a higher error count than the total number of words in
the reference. For simplicity, we streamline all the Beep-PER
results presented in subsequent sections, ensuring that the val-
ues remain within the 0 to 100% range in both tables and graphs.
The code for Beep-PER and the enhancement demonstration
will be publicly available2.

1https://www.openslr.org/14/
2https://github.com/candyolivia/is2024_deep_enhancement
3https://github.com/microsoft/DNS-Challenge
4https://claritychallenge.org/docs/cec2/data/cec2_data

3. Experiment
3.1. Dataset

We utilized subsets from two speech enhancement challenges:
the 3rd Deep Noise Suppression (DNS) Challenge3[18] and the
2nd Clarity Enhancement Challenge (CEC2)4 [19, 20]. The
DNS challenge is a sequence of single-channel noise suppres-
sion challenges by Microsoft. Meanwhile, the Clarity Chal-
lenge is a sequence of machine-learning challenges for hearing
aids. The CEC2 dataset was recorded using hearing aid micro-
phones. We selected these datasets because, to our knowledge,
the noise stimuli they contain best represent real-world scenar-
ios. However, it is important to note a limitation: drawing con-
clusions becomes challenging in scenarios where the speech-
to-noise ratio (SNR) is low, such as during the Lombard effect
[21]. Nonetheless, actual noisy environments can have much
lower SNRs, which may not be covered by other evaluation
sets in different noise reduction datasets. Moreover, we can use
these datasets to identify types of noise that are difficult to re-
duce and that affect speech intelligibility perception.

In addition to the original test data provided in the DNS
challenge, we generated an evaluation dataset comprising 2,707
utterances by utilizing the DNS challenge dataset. This dataset
was created by mixing clean speech extracted from the VCTK
[22] dataset with randomly chosen noise signals with SNR val-
ues ranging from -5 to 15 dB. Consequently, this dataset con-
tains diverse real-world test scenarios encompassing various
noise types, reverberations, and even paralinguistic elements
such as laughter or sighs. Our utilization of the VCTK dataset
was restricted due to our reliance on the Beep dictionary, which
is tailored to British accents for phoneme derivation in recog-
nized speech. We named the evaluation datasets for the original
test data (synthetic clips with reverberation) Set-1 and generated
test data Set-2.

The CEC2 dataset presents a scenario where a listener oc-
cupies a room while a target speaker utters a sentence in the
presence of two or three active interfering sound sources. These
scenes are characterized by randomized parameters such as
room size, materials, target speaker identity, specific spoken
sentences, listener and target talker locations, noise interference
positions, as well as details such as listener head orientation. We
utilized the front signal of hearing aid channel signals from the
CEC2 development set (2,500 scenes) with SNR ranging from
-12.5 to 7.5 dB and its subset with SNR ranging from 0 to 7.5
dB with their corresponding anechoic clean speech as evalua-
tion data. For simplicity, we named these evaluation datasets
Set-1 and Set-2, respectively.

3.2. Speech Enhancement Methods

As shown in Fig. 1, we selected three modern speech enhance-
ment techniques: Denoiser5, developed using the DEMUCS
architecture [23, 26]; DeepFilterNet6 [24]; and FullSubNet+7

[25]. These methods were selected for their outstanding per-
formance in previous DNS challenges, their efficiency in terms
of parameter count, and their ability to run in real time on a
notebook CPU, making them suitable for many applications.

Denoiser, a real-time speech enhancement model, employs
a unique encoder-decoder architecture with skip connections,
allowing it to process audio directly from its raw waveform.
Denoiser can address both stationary noise and the more chal-
lenging nonstationary noise, effectively restoring clean speech
even in reverberant environments [23]. Moreover, achieves
state-of-the-art speech enhancement results while maintaining
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Table 1: Objective evaluation results of three speech enhancement methods using DNS and CEC2 datasets: Denoiser (initial hidden
channels H of 48 and 64) [23], DeepFilterNet3 [24], and FullSubNet+ [25]. The mean values of PESQ, STOI, WER (%), and Beep-
PER (%) are displayed, with arrows indicating the superior performance direction for each metric.

Dataset Subset SNR (dB) Method RTF (↓) Causal PESQ (↑) STOI (↑) WER (↓) Beep-PER (↓)
Unprocessed - - 1.822 0.866 9.728 9.234
Denoiser (H=48) 0.80 Yes 2.932 0.921 5.740 5.333
Denoiser (H=64) 1.05 Yes 2.938 0.926 5.673 5.132
DeepFilterNet3 0.19 No 3.168 0.942 4.353 4.232

DNS Set-1 [0, 20]

FullSubNet+ 0.21 No 3.218 0.938 4.666 4.581
Unprocessed - - 2.287 0.219 20.747 19.071
Denoiser (H=48) 0.80 Yes 2.770 0.047 27.988 25.094
Denoiser (H=64) 1.05 Yes 2.844 0.048 26.325 23.593
DeepFilterNet3 0.19 No 3.055 0.128 21.268 18.918

DNS Set-2 [-5, 15]

FullSubNet+ 0.21 No 1.966 0.640 33.440 29.954
Unprocessed - - 1.421 0.620 60.980 57.523
Denoiser (H=48) 0.80 Yes 1.168 0.062 79.059 74.315
Denoiser (H=64) 1.05 Yes 1.246 0.062 78.527 73.953
DeepFilterNet3 0.19 No 1.438 0.625 71.142 66.844

CEC2 Set-1 [-12.5, 7.5]

FullSubNet+ 0.21 No 1.354 0.529 76.218 71.187
Unprocessed - - 1.782 0.771 27.174 24.482
Denoiser (H=48) 0.80 Yes 1.655 0.062 50.298 55.082
Denoiser (H=64) 1.05 Yes 1.722 0.060 51.647 56.017
DeepFilterNet3 0.19 No 1.941 0.790 43.418 39.204

CEC2 Set-2 [0, 7.5]

FullSubNet+ 0.21 No 1.636 0.651 53.772 48.277

impressive efficiency. This efficiency is attributed to its abil-
ity to leverage the knowledge of speech production and psy-
choacoustic perception while having a real-time performance
[24]. FullSubNet+ was built upon its successor, FullSubNet
[27]. Unlike FullSubNet, FullSubNet+ employs a novel “mul-
tiscale time sensitive channel attention” module that pinpoints
crucial frequency regions for noise reduction and replaces com-
putationally expensive LSTM layers with stacked temporal con-
volutional network [28] blocks, making it lighter and faster than
FullSubNet while maintaining performance. This method was
reported to surpass other state-of-the-art methods in the DNS
challenge [25].

3.3. Evaluation

For our evaluation, we either retrained existing speech enhance-
ment models with default parameters or utilized pretrained
models available online, all of which were trained on the DNS
training dataset. We confirmed that our results closely align
with those reported in the original papers. To simulate real-
world conditions, we also calculated the real-time factor (RTF)
during inference on a quad-core Intel i5 CPU notebook com-
puter using a single thread. Additionally, we incorporated in-
formation about the causality of speech enhancement methods,
which is very important for the development of several real-time
speech-based technologies. We follow the definition of a causal
system outlined in the CEC2, which dictates that no look-ahead
information from input samples beyond 5 ms is included.

Two commonly used objective metrics for evaluating noise
reduction effectiveness include the perceptual evaluation of
speech quality (PESQ) [29] and short-term objective intelli-
gibility (STOI) [30]. We also incorporated wide-band PESQ
and STOI metrics to analyse the speech enhancement quality,
along with WER and Beep-PER. Importantly, since we lack
transcripts for all reference signals, we computed WER and
Beep-PER using recognized speech from pairs of clean-noisy or
clean-enhanced signals employing Whisper [10] with a medium
scale trained on English-only data8. We chose a medium-scale
model8 based on initial findings, showing it achieves about 2%
higher accuracy in WER with clean data and about 5% higher
accuracy with noisy data in CEC2 Set-1 compared to a large-
scale model9.

3.4. Results

Table 1 displays the comprehensive results of speech enhance-
ment without fine-tuning. Across all methods, the quality of the
enhanced speech signals significantly improves for DNS Set-
1, as validated by metrics including PESQ, STOI, WER, and
Beep-PER. However, despite advancements in speech enhance-
ment techniques, maintaining robust performance is still chal-
lenging, particularly when dealing with mismatches in SNRs
between training and evaluation data, and during cross-dataset
evaluations. We obtained intriguing results indicating that the
STOI metric displayed a different trend compared to other met-
rics, and employing methods that utilized STOI-related features
resulted in improved STOI scores.

Through fine-tuning, speech enhancement methods can be
closely adapted to specific datasets and environmental con-
ditions, thereby enhancing quality and intelligibility. Conse-
quently, we conducted experiments involving the fine-tuning of
our model using the CEC2 training dataset. To streamline the
task, we exclusively utilized signals from one channel micro-
phone simulating the Behind-The-Ear form of a hearing aid.
Our training set comprised a total of 12,000 scenes of training
data3, encompassing both left and right signals. For illustra-
tive purposes, we plotted the results obtained using Denoiser
(H=48), which was chosen for its causality and low RTF, as
well as DeepFilterNet3, which performed the best on the CEC2-
Set1, as depicted in Fig. 2 and Fig. 3.

The example in Fig. 2 illustrates that the noisy signal ex-
hibits greater enhancement at higher SNRs than at lower SNRs.
While the spectrogram suggests that the fine-tuned Denoiser
model closely resembles clean speech in the first row, the actual
voice appears corrupted and less smooth, making it more chal-
lenging to recognize than the results obtained with the DeepFil-
terNet3 model. Additionally, the DeepFilterNet3 model strug-
gles to effectively reduce noise from nontarget speakers. Fig-
ure 3 displays the distribution of the enhanced noisy speech of
these fine-tuned models. Although the Denoiser exhibits noise
reduction in some signals at higher SNRs, on average, its per-

5https://github.com/facebookresearch/denoiser
6https://github.com/Rikorose/DeepFilterNet
7https://github.com/RookieJunChen/FullSubNet-plus
8https://huggingface.co/openai/whisper-medium.en
9https://huggingface.co/openai/whisper-large-v2
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Figure 2: Spectrograms depicting enhanced speech signals pro-
cessed using the fine-tuned Denoiser (H=48) and DeepFilter-
Net3 models (300 epochs). The spectrograms are divided into
two rows: the first row corresponds to signals with SNR < 0 dB
(another speaker’s voice as noise), while the second row corre-
sponds to signals with SNR ≥ 0 dB (music as noise).
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Figure 3: Violin plots illustrate noisy speech alongside en-
hanced speech signals processed with the fine-tuned Denoiser
(H=48) and DeepFilterNet3 models. We also performed t tests
on all feasible pairs of noisy and enhanced signals in the same
SNR group. Our analysis confirmed statistically significant dif-
ferences (p < 0.001) between these methods. The red dots
indicate the mean value of each group.

formance does not surpass that of noisy signals. Conversely,
the DeepFilterNet3 model performs notably well, particularly
at higher SNRs, yet it still encounters difficulty in enhancing
noisy signals at lower SNRs, with a mean Beep-PER of approx-
imately 50%.

Furthermore, we analyse objective evaluation issues, partic-
ularly speech intelligibility, which we measure using the STOI
and Beep-PER scores. Table 1 indicates that Beep-PER demon-
strates a lower error rate compared to WER and exhibits a
similar trend. Thus, to focus on further analysis, we opt not
to consider the latter. Our analysis focuses on the output of
the fine-tuned DeepFilterNet3 model, revealing that over 70%
(1,783/2,500) of scenes exhibit STOI scores exceeding 0.5, yet
less than half exhibit Beep-PER scores below 30%. Interest-
ingly, some scenes with nearly perfect STOI scores exhibit sig-
nificantly high Beep-PER values, and vice versa. In extreme
cases, 53 out of 2,500 scenes achieve Beep-PER scores of zero
(perfect recognition) but STOI scores of nearly zero. Despite
this discrepancy, our inspection confirms that noise is reduced,

as shown by PESQ scores surpassing 3.5.

We also identify recognition errors attributed to halluci-
nations induced by Whisper, albeit to a lesser extent than
other recognition errors. Preprocessing, notably conversion
to phoneme-level tokens, mitigates some issues, reducing in-
stances of unknown words such as screaming tokens (‘AHHH-
HHHH’) and excessive punctuation. However, critical halluci-
nation effects persist in Whisper, notably redundancy, violent
words, and expressions of gratitude. Using a parser, we auto-
matically label these prevalent hallucination effects, identifying
approximately 23 scenes (approximately 0.9%) in recognized
text derived from enhanced speech.

4. Discussion

Our experiment yielded three key findings:

(1) While these methods generally performed better under sim-
ilar conditions and high SNRs, their robustness across dif-
ferent datasets, even after fine-tuning, was notably lacking.

(2) While common objective metrics offer insights for assess-
ing speech enhancement methods under conditions similar
to that of the training data and high SNRs, they struggle to
accurately evaluate methods in challenging settings charac-
terized by low SNRs and noise from multiple speakers.

(3) The practical applicability of speech enhancement tech-
niques in real-world scenarios is limited, particularly in do-
mains such as hearing aids, necessitating further investi-
gation. Despite advancements, adapting these techniques
to diverse and dynamic real-life environments is still chal-
lenging, underscoring the importance of ongoing research
and refinement efforts.

We recognize the limitations of our experiment, primarily
stemming from the inability of the dataset to fully represent
all real-world noisy environments. Furthermore, our compar-
ison of speech enhancement methods may not encompass all
available advanced techniques, and ensuring a fair review under
identical conditions is challenging due to accessibility issues.
Additionally, our study did not incorporate the latest advance-
ments in objective measurements or consider potentially supe-
rior ASR systems. These constraints underscore the necessity
for further research to navigate these complexities and deepen
our comprehension of speech enhancement across diverse real-
world scenarios and application domains.

5. Conclusion

In conclusion, our study underscores the ongoing challenges
faced by recent speech enhancement methods, particularly in
noisy environments with low SNRs and additional noise from
other human voices. While fine-tuning approaches show poten-
tial for improving enhancement results, their efficacy remains
contingent upon the dataset used for training, limiting their ap-
plicability in real-world scenarios with unpredictable noise. Ad-
ditionally, existing metrics cannot effectively assess speech en-
hancement in noisy environments, and ASR-based methods are
hindered by issues such as text hallucination. Therefore, exten-
sive testing across diverse datasets and real-world scenarios are
required to improve the effectiveness of recent speech enhance-
ment methods.
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[7] I. López-Espejo, A. Edraki, W.-Y. Chan, Z.-H. Tan, and J. Jensen,
“On the deficiency of intelligibility metrics as proxies for
subjective intelligibility,” Speech Communication, vol. 150, pp.
9–22, 2023. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S016763932300050X

[8] Seung-Eun Kim and Bronya R. Chernyak and Olga Seleznova and
Joseph Keshet and Matthew Goldrick and Ann R. Bradlow , “Au-
tomatic recognition of second language speech-in-noise,” JASA
Express Letters, 2024.

[9] R. E. Zezario, S. Fu, F. Chen, C. Fuh, H. Wang, and Y. Tsao,
“Deep learning-based non-intrusive multi-objective speech as-
sessment model with cross-domain features,” IEEE ACM Trans.
Audio Speech Lang. Process., vol. 31, pp. 54–70, 2023.

[10] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and
I. Sutskever, “Robust speech recognition via large-scale weak su-
pervision,” in Proc. of ICML, ser. Proceedings of Machine Learn-
ing Research, vol. 202. PMLR, 2023, pp. 28 492–28 518.

[11] R. E. Zezario, F. Chen, C. Fuh, H. Wang, and Y. Tsao, “Utilizing
whisper to enhance multi-branched speech intelligibility predic-
tion model for hearing aids,” CoRR, vol. abs/2309.09548, 2023.
[Online]. Available: https://doi.org/10.48550/arXiv.2309.09548

[12] F. S. Oliveira, E. Casanova, A. C. Júnior, L. R. S. Gris,
A. da Silva Soares, and A. R. G. Filho, “Evaluation of speech rep-
resentations for MOS prediction,” in Proc. of Text, Speech, and
Dialogue, ser. Lecture Notes in Computer Science, vol. 14102.
Springer, 2023, pp. 270–282.

[13] A. Koenecke, A. S. G. Choi, K. Mei, H. Schellmann, and
M. Sloane, “Careless whisper: Speech-to-text hallucination
harms,” ArXiv, 2 2024. [Online]. Available: http://arxiv.org/abs/
2402.08021

[14] A. Ali and S. Renals, “Word Error Rate Estimation for Speech
Recognition: e-WER,” in Proc. of ACL (Vol. 2: Short Papers).
Melbourne, Australia: Association for Computational Linguistics,
2018, pp. 20–24.

[15] K. Arai, A. Ogawa, S. Araki, K. Kinoshita, T. Nakatani, N. Kamo,
and T. Irino, “Intelligibility prediction of enhanced speech using
recognition accuracy of end-to-end asr systems,” in Proc. of AP-
SIPA ASC, 2022, pp. 1583–1589.

[16] A. Fang, S. Filice, N. Limsopatham, and O. Rokhlenko, “Using
phoneme representations to build predictive models robust to asr
errors,” in Proc. of ACM SIGIR, ser. SIGIR ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 699–708.

[17] R. Errattahi, A. El Hannani, and H. Ouahmane, “Automatic
Speech Recognition Errors Detection and Correction: A Review,”
Procedia Computer Science, vol. 128, pp. 32–37, 2018, 1st Inter-
national Conference on Natural Language and Speech Processing.

[18] C. K. A. Reddy, H. Dubey, K. Koishida, A. A. Nair, V. Gopal,
R. Cutler, S. Braun, H. Gamper, R. Aichner, and S. Srinivasan,
“INTERSPEECH 2021 Deep Noise Suppression Challenge,” in
Proc. of Interspeech. ISCA, 2021, pp. 2796–2800.

[19] M. A. Akeroyd, W. Bailey, J. Barker, T. J. Cox, J. F. Culling,
S. Graetzer, G. Naylor, Z. Podwińska, and Z. Tu, “The 2nd Clar-
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