
Fine-tuning TitaNet-Large Model for
Speaker Anonymization Attacker Systems

Candy Olivia Mawalim, Aulia Adila, Masashi Unoki
Graduate School of Advanced Science and Technology

Japan Advanced Institute of Science and Technology, Ishikawa, Japan
{candylim, adila, unoki}@jaist.ac.jp

Abstract—Speaker anonymization techniques are crucial for
safeguarding user privacy in voice-based applications. However,
these methods are susceptible to adversarial attacks that can
compromise their effectiveness. This paper proposes attacker
systems that leverage the power of fine-tuned TitaNet-Large
and ECAPA-TDNN models to identify the original speaker
from anonymized speech generated by various anonymization
methods. Both pre-trained models are renowned for their state-
of-the-art ability to extract robust speaker embeddings. Fine-
tuning these models with anonymized speech enables them to
identify underlying patterns in anonymized speech. We evaluated
the proposed attacker systems against multiple anonymization
techniques that performed effectively in a series of voice privacy
challenges. Our experimental results underscore the effectiveness
of the fine-tuned TitaNet-Large model in breaking through
these anonymization methods, as indicated by the reduced equal
error rate (EER). This highlights the importance of robust and
adaptive anonymization strategies to counter such emerging semi-
informed threats.

Index Terms—speaker anonymization, attacker model, semi-
informed, TitaNet-Large, voice privacy

I. INTRODUCTION

Speaker anonymization techniques are essential for safe-
guarding user privacy in voice-based applications [1], [2].
However, the effectiveness of these techniques is constantly
challenged by the emergence of sophisticated adversarial at-
tacks [3]. The First Attacker Challenge has highlighted the
growing threat to speaker anonymization systems [4]. This
challenge focuses on developing attacker systems in the form
of automatic speaker verification (ASV) systems, which are
capable of identifying speakers even after anonymization.

This paper introduces an attack strategy that compares
the power of fine-tuned TitaNet-Large (TitaNet-L) [5] and
ECAPA-TDNN models [6]. Both models are renowned for
their state-of-the-art performance in the speaker verification
task. By fine-tuning these models on a diverse dataset of
anonymized and original speech samples, we enable them to
identify underlying patterns in anonymized speech, thereby
accurately recognizing the original speaker.

Our work focuses on the semi-informed attack scenario,
where the attacker has access to the speaker anonymization
system and anonymized speech samples. We evaluated our
proposed systems against the state-of-the-art anonymization
techniques submitted to the VoicePrivacy 2024 Challenge
[7]. Our experimental results underscore the effectiveness of
the fine-tuned TitaNet-L models in breaking through these
defenses, as indicated by the reduced equal error rate (EER).
These results highlight the limitations of current anonymiza-
tion techniques to counter emerging semi-informed threats.

Fig. 1. Fine-tuning phase (Top) and Inference phase (Bottom) of our proposed
attacker systems based on fine-tuned TitaNet-L model.

II. PROPOSED ATTACKER SYSTEMS

Figure 1 shows our proposed system which is based on
fine-tuning the TitaNet-Large (TitaNet-L) model [5]. TitaNet-
L is the largest variant of the TitaNet architecture with 25.3
million parameters. TitaNet has an encoder-decoder structure.
The ConvASR encoder acts as a high-level feature extractor,
processing input audio from normalized mel spectrograms. It
combines local features extracted through 1D depth-wise sep-
arable convolutions with global context information obtained
via global average pooling in Squeeze-and-Excitation (SE)
layers. This process improves the ability of the network to
distinguish speaker-specific characteristics from input audio.

The speaker decoder incorporates an attentive statistics
pooling layer to compute attention features across channel
dimensions, creating time-independent, utterance-level speaker
representations. This layer calculates weighted statistics, al-
lowing the network to focus on the most relevant information
for speaker verification. The features are then passed through
linear layers to reduce dimensionality and map the resulting
192-dimensional features to the final number of classes, rep-
resenting the different speakers in the training set.

The model generates fixed-length speaker embeddings,
known as t-vectors, as its final output from the decoder. These
embeddings encapsulate speaker-specific information and are
used in speaker verification tasks, where the cosine similarity
between t-vectors serves as the scoring backend.

To fine-tune the TitaNet-L model, we used a 9:1 training-
validation ratio. We only fine-tuned the final decoder layer ofIC
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TABLE I
EER (%) COMPARISON OF TITANET-LARGE AND ECAPA-TDNN ATTACKER MODELS ACROSS VARIOUS EXPERIMENTAL CONDITIONS

Method Training data Gender Development Test Global avg.
B3 B4 B5 T8-5 T10-2 T12-5 T25-1 B3 B4 B5 T8-5 T10-2 T12-5 T25-1

ECAPA-TDNN Original
F 28.43 34.37 35.82 39.63 43.63 43.32 42.65 27.92 29.37 33.95 42.50 41.97 43.61 42.34 37.82
M 22.04 31.06 32.92 40.84 40.04 44.10 40.06 26.72 31.16 34.73 40.05 38.75 41.88 41.92 36.16

Avg. 25.23 32.71 34.37 40.23 41.84 43.71 41.36 27.32 30.27 34.34 41.27 40.36 42.75 42.13 36.99

Fine-tuned Anonymized F 41.51 42.80 37.97 46.57 39.48 39.18 42.57 38.47 41.04 35.37 46.97 34.61 35.73 41.13 40.24
ECAPA-TDNN (B5 and T12-5) M 38.08 42.16 36.34 47.06 34.66 36.15 41.59 37.98 42.16 35.80 45.94 31.91 36.27 40.82 39.07

Avg. 39.80 42.48 37.15 46.82 37.07 37.66 42.08 38.23 41.60 35.58 46.45 33.26 36.00 40.97 39.65

TitaNet-L
VoxCeleb 1,2; SRE; F 43.18 46.59 48.27 45.20 33.65 49.29 48.46 42.34 44.53 46.70 45.44 27.14 46.21 48.87 43.99

LibriSpeech; RIR noise; M 37.60 44.38 49.35 42.24 30.43 49.40 47.20 40.32 43.43 47.66 44.77 29.40 50.78 46.55 43.11
Fisher; Switchboard Avg. 40.39 45.48 48.81 43.72 32.04 49.34 47.83 41.33 43.98 47.18 45.10 28.27 48.49 47.71 43.55

Fine-tuned
Anonymized (B5)

F 36.09 32.67 34.66 43.18 33.40 36.19 38.07 34.13 34.13 33.21 43.79 33.03 32.71 36.32 35.83
TitaNet-L* M 34.01 33.23 34.00 44.24 31.95 33.51 35.44 33.63 32.50 31.64 43.43 33.85 32.25 34.08 34.84

Avg. 35.05 32.95 34.33 43.71 32.68 34.85 36.75 33.88 33.31 32.42 43.61 33.44 32.48 35.20 35.33

Fine-tuned Anonymized F 34.66 34.23 31.96 41.73 33.10 31.25 36.54 32.15 32.12 26.24 41.42 26.66 26.82 33.75 33.04
TitaNet-L** (B5 and T12-5) M 33.56 32.92 27.02 41.93 27.64 28.42 36.37 30.72 33.80 28.06 40.92 28.29 29.16 36.07 32.49

Avg. 34.11 33.57 29.49 41.83 30.37 29.83 36.46 31.44 32.96 27.15 41.17 27.47 27.99 34.91 32.77

Fine-tuned
Anonymized (all)

F 45.57 46.57 49.00 48.30 48.72 49.15 48.44 46.35 49.60 49.45 51.82 49.45 49.79 49.77 48.71
TitaNet-L M 49.84 51.41 50.93 51.54 51.06 51.53 51.09 47.89 48.78 49.89 45.88 49.00 49.95 48.56 49.81

Avg. 47.71 48.99 49.97 49.92 49.89 50.34 49.77 47.12 49.19 49.67 48.85 49.23 49.87 49.17 49.26

The abbreviations F, M, and Avg. under Gender correspond to female, male, and average, respectively. “Original” training data refers to the original, unanonymized training data used for building speaker anonymization models. In contrast,
“Anonymized” training data consists of speech samples that have been processed by a specific speaker anonymization model. * and ** indicate the submitted system 1 and 2. Bold font represents the EER obtained by the most effective attacker
system in each category.

the model for a maximum of 10 epochs with a batch size of 8.
We also performed speed perturbation as a data augmentation
technique to enhance the model’s robustness to variations in
speech speed. We used the angular softmax loss function to
improve the discriminative power of embeddings by increasing
the angular margin between different classes.

The fine-tuned model was optimized using the AdamW
optimizer with a learning rate of 0.0001 and a weight decay
of 0.0002. A cosine annealing learning rate scheduler with
warmup was used to gradually decrease the learning rate over
time, improving convergence and generalization.

III. EXPERIMENTS

We utilized fine-tuned TitaNet-L models1 [5] as our pri-
mary attacker models. We fine-tuned our attacker models on
the anonymized speech dataset. Specifically, we focused on
anonymized speech generated by the B5 and T12-5 systems,
which exhibited high EER scores and shared similar feature
extraction and modification techniques.

We compared our proposed attacker model with a baseline
ECAPA-TDNN model2 [4] and its fine-tuned version trained
on B5 and T12-5 anonymized speech. Our results, summarized
in Table I, demonstrate that our fine-tuned TitaNet-L model
outperforms the baseline model overall on anonymized B5
and T12-5 data. Fine-tuning an ASV system on anonymized
speech generated by similar methods proves to be an effective
strategy for creating a robust attacker model for those partic-
ular methods. This approach leads to a significant reduction
in the EER, exceeding 10% in both attacks on B5 and T12-5
speaker anonymization methods. However, we also observed
a reduction in performance on systems with significantly
different anonymization techniques, such as B3, B4, and T8-5.

As a straightforward approach, we also fine-tuned the
TitaNet-L model on all anonymized data. However, this
approach was ineffective and in fact led to a decrease in
performance as the model became confused by the diverse and
potentially misleading information present in the anonymized
data. This is evident in the increase in EER observed when

1https://huggingface.co/nvidia/speakerverification en titanet large
2https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb

training on all anonymized data (last row of Table I) compared
to the original pretrained model.

IV. CONCLUSION

This paper presents attacker systems based on fine-tuning
the TitaNet-L model to compromise speaker anonymization
systems. Our results demonstrate the effectiveness of this
approach, particularly against similar techniques such as B5
and T12-5. However, its performance degrades against funda-
mentally different techniques. The ineffectiveness of directly
fine-tuning TitaNet-L on all anonymized data underscores the
importance of researching training data quality, as well as the
sources and anonymization methods applied to datasets, for
developing robust attacker models.
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