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The increasing sophistication of Al-generated human voice poses
a significant threat, demanding robust detection systems that can
generalize effectively across diverse linguistic environments and
synthesis techniques. In response to the SAFE Challenge, this paper
introduces a novel approach to multilingual audio deepfake detec-
tion. Our primary contribution lies in the comprehensive study 1 Introduction
of deepfake detection using a multilingual speech corpus encom-
passing 17 languages and a broad spectrum of synthesis methods
and acoustic conditions, designed to enable more realistic and chal-
lenging evaluations. To optimally utilize this diverse data, we pro-
pose a hybrid detection model that synergistically combines the
strengths of end-to-end RawNet and AASIST architectures with
language-agnostic representations learned from a multilingual self-
supervised learning model. Additionally, we explore the efficacy of
RawBoost data augmentation in enhancing robustness against real-
world noise. Our experimental evaluation demonstrates promising
generalization in generated audio detection, achieving approxi-
mately 73% balanced accuracy across multilingual data and unseen
synthesis algorithms.

Recent advancements in deep learning techniques have significantly
enhanced the ability to synthesize highly realistic human speech,
enabling the widespread creation of machine-generated voices [40,
45]. While the innovations in machine-generated voices have fueled
numerous positive applications in accessibility, entertainment, and
virtual communication, they have also introduced potential threats,
such as deepfake attacks, which pose serious risks to security and
trust in digital communications.

A key requirement for machine-generated voice detection sys-
tems is generalizability [8, 25]. Creating strong detection systems
that can reliably identify generated voices across different languages
and the ever-changing landscape of synthesis techniques is chal-
lenging. Linguistic diversity, rapid evolution of synthesis technolo-
gies, dataset limitations, evaluation protocols, model robustness,
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innovation in the detection and attribute of synthetic and manipu-
lated audio artifacts. Recognizing the challenge’s consideration of
realistic forensic scenarios (which may include various data quality
and diverse processing [10]), this work directly addresses SAFE by
presenting a novel approach for robust detection models. Our aim
is to effectively distinguish between human and machine-generated
speech across multilingual and multisource datasets. To achieve
this, we utilized a comprehensive multilingual speech corpus from
multiple open-source resources, namely JMAD dataset, subject-
ing them to rigorous curation to ensure both reliability and broad
representativeness. JMAD dataset spans 17 languages and encom-
passes a wide spectrum of synthesis methods, recording conditions,
and speaker demographics, explicitly designed to enhance model
generalization beyond existing datasets.

Building on the foundation of our comprehensive multilingual
dataset and the goal of robust detection, we implemented a hy-
brid modeling strategy. This approach strategically integrates the
strengths of both end-to-end and self-supervised learning-based
models to enhance the system’s ability to distinguish differences
between human- and machine-generated speech. To thoroughly
evaluate the effectiveness and limitations of existing detection meth-
ods, we performed a detailed analysis of the model generalization.
This investigation specifically focused on performance variations
across the diverse languages and spoofing algorithms represented
in our dataset, aiming to uncover inherent strengths and potential
vulnerabilities in current approaches when faced with such varied
data. Our analysis provides critical insights into the challenges
of cross-lingual generalization in the context of generated speech
detection.

Our key contributions significantly advance the field of machine-
generated voiced detection by:

e Conducting a more comprehensive evaluation using a large-
scale multilingual and multi-source corpus;

e Proposing a hybrid model leveraging state-of-the-art meth-
ods for cross-lingual and cross-source robustness;

o Analyzing the generalization challenges of detecting gener-
ated, processed, and laundered speech on completely unseen
data.

2 Toward Multilingual Generated Voice
Detection

Early research in generated voice detection or audio deepfake de-
tection (ADD) was predominantly focused on English or a lim-
ited set of languages [19, 21, 45]. For instance, the well-known
ASVspoof? challenge series served as a key benchmark in English
[9, 38, 39, 41, 42]. While ADD? challenges have also been conducted
in Chinese [43, 44], these benchmarks have largely driven the devel-
opment and evaluation of detection systems using genuine human
(pristine) voices often recorded under controlled laboratory condi-
tions. Recognizing the limitations of this monolingual focus, recent
efforts have begun to address the critical challenges of multilingual-
ism. This section outlines the major existing work that historically
tackles the complexities of detecting human and machine-generated
speech across multiple languages.

https://www.asvspoof.org/
3http://addchallenge.cn/add2023
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2.1 Existing Datasets for Generated Voice
Detection

Open-source datasets comprising both human and machine-
generated speech play a pivotal role in fostering the development
of detection systems. One of the most widely adopted benchmark
datasets is provided by the ASVspoof Challenge [9, 20, 38, 39, 41].
Its latest edition is built on the MLS English dataset [31] and fea-
tures stronger attacks, including advanced text-to-speech (TTS)
and voice conversion (VC) algorithms designed to fool automatic
speaker verification (ASV) and countermeasure (CM) subsystems,
as well as adversarial attacks (AT). Codecs are also applied to both
human and machine-generated speech to simulate realistic audio
transmission conditions.

Similarly, the ADD Challenge [43, 44], which aims to address
more complex real-life scenarios, has released datasets based
on publicly available Chinese Mandarin corpora—AISHELL-1 [5],
AISHELL-3 [34], and AISHELL-4 [11]. To generate fake audio sam-
ples in ADD datasets, researchers utilized a combination of ad-
vanced synthesis, character-level mixing, noise addition, and au-
dio transcoding. These generation include both traditional and
advanced neural network-based speech synthesis and voice con-
version technologies, ensuring a wide variety of fake samples for
robust detection research.

Other studies investigating cross-lingual performance in audio
deepfake detection have indicated that a mismatch between the
languages used for training and testing leads to a degradation in
detection performance [1, 3]. To address this issue, Ba et al. con-
structed a novel cross-lingual evaluation dataset known as the DE-
CRO (Deepfake Cross-Lingual) benchmark, which features spoofed
speech in the two most widely spoken languages globally: English
and Chinese [3]. Their findings suggest that models trained on Eng-
lish deepfake data can transfer knowledge of spoofing artifacts to
other languages, particularly when domain adaptation techniques
are employed to mitigate language dependency.

Subsequently, several datasets have been developed to support
languages beyond English and Chinese. A notable multilingual
datasets is MLAAD (The Multi-Language Audio Anti-Spoofing
Dataset) [26], generated using 91 TTS models and covering 38 lan-
guages. It expands upon the M-AILABS speech datasets [47], which
provide recordings of pristine human speech in eight languages
sourced from audiobooks and interviews. The data creation pro-
cess of MLAAD differs significantly from other existing works that
directly utilize human voices as non-generated speech. Specifically,
MLAAD labels data as ‘benign’ and ‘spoofed’, and for languages
not present in M-AILABS, the ‘benign’ data was created through
neural machine translation of existing human speech. MLAAD has
demonstrated its effectiveness by enabling the training of deepfake
detection models with superior performance compared to other
datasets, such as In-The-Wild [25] and FakeOrReal [33] datasets,
and its large linguistic diversity enables more robust cross-lingual
evaluation and model generalization.

Efforts have also been directed towards audio deepfake detec-
tion in low-resource languages. For instance, research has explored
languages within the ASEAN region [23]. This preliminary study in-
vestigated the development of speech spoofing countermeasures for
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ASEAN languages, specifically detailing datasets for Thai (ThaiS-
poof [12]), Indonesian (InaSpoof [2, 22]), Vietnamese (VSASV [14]),
and Myanmar (UCSYSpoof [27]). This work highlights several key
challenges inherent in the development of robust detection models
for low-resource languages, including the limited availability of
pristine data sources, the variation in data quality across different
languages, and the continuous evolution of high-quality spoofing
techniques.

In summary, although existing datasets have contributed sig-
nificantly to the field of generated voice detection, many remain
limited in linguistic diversity and lack sufficient balance across
languages.

2.2 Generated Voice Detection Methods

Methods for detecting generated speech can be broadly categorized
into two types of approaches: (1) a pipeline architecture consisting
of a front-end feature extractor and a back-end classifier, and (2)
an end-to-end (E2E) architecture that operates directly on raw
audio waveforms while jointly optimizing the feature extraction and
classification processes [19, 45]. Benchmark models have primarily
been established within the context of research challenges such as
the ASVspoof and ADD series, where new systems are evaluated
against established baselines.

Early development stages often utilizes the pipeline approach and
the front-end feature extractors are typically categorized into hand-
crafted features, which served as foundational baselines in earlier
challenges, and deep features, which are learned using deep neural
networks. Well-known spectral features include linear frequency
cepstral coefficients (LFCC) and constant-Q cepstral coefficients
(CQCCQ), both of which have demonstrated strong performance in
ASVspoof and ADD challenges [45]. However, most hand-crafted
features suffer from design biases due to the limitations of their
representations [46]. To overcome this, deep features have been in-
troduced and increasingly adopted. Features extracted from models
pre-trained on large-scale speech corpora have shown considerable
success and are featured in many top-performing systems in the
benchmark challenges [19, 45]. One of the most prominent pre-
trained embedding features is derived from XLS-R [4], a variant
of wav2vec 2.0, which has demonstrated high effectiveness and
robustness in detecting fake audio.

Similarly, the back-end classifier was initially implemented us-
ing traditional machine learning methods, most commonly support
vector machines, Gaussian mixture models, and random forests.
In particular, GMM-based classifiers are frequently used alongside
LFCC or CQCC features and serve as baselines in benchmark chal-
lenges [40, 45]. More recently, deep learning-based classifiers have
significantly outperformed traditional methods due to their supe-
rior modeling capabilities [13]. Notable architectures include light
convolutional neural network (LCNN), residual network, and graph
neural networks (GNN) [19]. One limitation of pipeline approach
is their high dependency on extracted features, as information lost
during feature extraction is often irretrievable [19]. As a result, E2E
architectures have gained increasing attention.

Two prominent E2E models are RawNet [36] and AASIST [16],
both of which serve as baselines in the most recent ASVspoof chal-
lenge [8]. RawNet employs a fixed bank of sinc filters and residual
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blocks with gated recurrent units (GRUs) to convert frame-level
representations into utterance-level embeddings. It is widely recog-
nized as one of the most reproducible and well-established models
in generated audio detection. AASIST, on the other hand, extends
RawNet with spectro-temporal heterogeneous graph attention lay-
ers to enhance representation learning. It has been noted for outper-
forming current state-of-the-art E2E models in several evaluation
scenarios [45].

Despite extensive efforts, a recurring challenge is the general-
ization of detection systems beyond the English datasets and con-
trolled benchmark environments [25, 45]. Studies have shown that
while many models perform well on standard benchmarks, their
effectiveness drops significantly on real-world or cross-language
data, indicating overfitting to specific datasets and a lack of robust-
ness to diverse spoofing techniques and acoustic conditions. To
address the generalization issue, recent studies have explored both
the adaptation of existing models and the development of novel
architectures for multilingual audio deepfake detection. For in-
stance, the adversarial-based domain adaptation paradigm has been
employed to train models to discriminate between real and fake
audio while minimizing reliance on language-specific features [3].
Furthermore, the effectiveness of multilingual speech pre-trained
models (PTMs) for audio deepfake detection has also been evalu-
ated across three varied benchmark settings. The findings suggest
that multilingual PTMs, when combined with simple downstream
networks, outperformed other PTM representations in audio deep-
fake detection, supporting the hypothesis that linguistic diversity
during pre-training enhances robustness [29].

3 Proposed Method

To address the challenges of robust and generalizable audio deep-
fake detection across diverse languages and spoofing techniques, we
propose a hybrid modeling approach that synergistically combines
the strengths of end-to-end raw waveform processing with the
learned representations from self-supervised learning (SSL) on mul-
tilingual data. Our method leverages two prominent architectures:
RawNet2 [36] for its efficacy in directly learning discriminative
features from raw audio, and AASIST (Audio Anti-Spoofing using
Integrated Spectro-Temporal Graph Attention Networks) [16] for
its attention-based mechanism that has shown promise in capturing
spoofing artifacts. Furthermore, to enhance the model’s ability to
generalize to unseen languages and spoofing methods, we integrate
a multilingual SSL model to inject language-agnostic representa-
tions. Finally, to further improve the robustness of our detection
models against various types of noise, we adopted an augmentation
method based on RawBoost [35].

Figure 1 presents an overview of our proposed method, which
consists of four primary modules. The first module is based on the
AASIST model, directly processing raw speech signals. The second
module, SSL-RawNet2-AASIST, utilizes the front-end system of
SSL-RawNet2 and the AASIST model as its back-end. The third
module is the optional RawBoost augmentation module. Finally,
the fourth module is the decision model, which determines whether
the input signal is pristine or generated speech.
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Figure 1: Illustration of our proposed two-stage hybrid method. The process involves two distinct training stages. Models
indicated by a fire icon are actively trained in their respective stages, while models marked with a snowflake icon have their

weights frozen.

3.1 AASIST module

AASIST is an end-to-end model for audio deepfake detection which
builds upon the SincNet layer for efficient front-end filtering and
integrates an attention mechanism to focus on the most discrimina-
tive temporal segments within the audio [16]. AASIST has shown
strong performance in detecting various types of audio spoofs by
effectively capturing subtle temporal inconsistencies and artifacts
introduced by synthesis and manipulation processes, and it has
become a state-of-the-art method, particularly on the ASVspoof
2019 dataset [37]. By including AASIST in our hybrid framework,
we aim to leverage its sensitivity to fine-grained spoofing cues.

3.2 SSL-RawNet2-AASIST module

To enhance the cross-lingual generalization capabilities of our hy-
brid model, we propose to integrate representations learned from a
pre-trained multilingual SSL model. SSL models, trained on mas-
sive amounts of unlabeled audio data across multiple languages,
learn rich contextualized representations that capture linguistic
and acoustic commonalities. We integrated the SSL embeddings
as feature fusion. Extracting embeddings from an intermediate or
final layer of the pre-trained SSL model and concatenating them
with the features extracted from RawNet and AASIST before the
classification layer. This allows the downstream classifier to lever-
age both task-specific and language-agnostic representations. We
investigated the effectiveness of two multilingual SSL models, such
as wav2vec2.0 XLS-R [4] and WavLM [6], based on their perfor-
mance on multilingual speech tasks and their suitability for feature
extraction or fine-tuning.
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3.3 RawBoost module

To enhance the robustness of our proposed detection models against
various real-world degradations and channel effects, we incorporate
an optional data augmentation module based on the RawBoost
method [35]. RawBoost is a data-driven augmentation technique
specifically designed for raw waveform inputs in spoofing detection.
Unlike other augmentation methods that might require external
noise recordings or impulse responses, RawBoost operates solely
on the existing training data, making it agnostic. The core principle
of RawBoost is to simulate variability commonly encountered in
real-world scenarios, particularly telephony. It achieves this by
applying a combination of several transformations to the raw audio
signal, incuding linear and non-linear convolutive noise, impulsive
signal-dependent additive noise, and stationary signal-independent
additive noise. By randomly applying and parameterizing these
transformations during training, RawBoost exposes the models to
a wider range of acoustic conditions, forcing them to learn more
invariant features that are less susceptible to noise and distortions.
This optional module can be selectively applied during the training
process to improve the generalization capabilities and real-world
performance of our RawNet and AASIST-based detection models,
without requiring any external data or significantly increasing the
complexity of the training pipeline.

3.4 Decision module

Our proposed hybrid model combines the back-end classifier path-
ways of its constituent modules through concatenation or late fu-
sion techniques. To obtain the final classification layer for predict-
ing whether the input audio is pristine or generated, we froze the
weights of the first and second modules. This final classification
layer learns to weight the contributions of the first and second
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Figure 2: Histogram showing the distribution of utterance
durations in the JMAD dataset (All Source) on a logarithmic
scale

modules based on the JMAD evaluation data. Subsequently, we
perform a grid search to determine the optimal hard final threshold
for the decision boundary between pristine and generated signals.

By combining the strengths of end-to-end raw waveform pro-
cessing, attentive spoofing artifact analysis, language-agnostic rep-
resentations from multilingual SSL, and optional data augmentation
with RawBoost, we aim to develop a robust and highly generalizable
audio deepfake detection system capable of effectively addressing
the evolving threats in diverse environments.

4 Experiment

The Synthetic Audio Forensics Evaluation (SAFE) Challenge is one
of initiatives aimed at fostering advancements in the detection of
synthetic and manipulated audio. Recognizing the growing sophis-
tication of audio generation and editing techniques, the challenge
presents participants with three distinct detection tasks: (Task 1)
identifying generated audio, (Task 2) identifying processed audio,
and (Task 3) identifying laundered audio. The SAFE challenge is
entirely blind (no datasets for training or evaluation will be pub-
licly released). Participants only have access to a limited sample
dataset for pilot testing. The submission of detection models was
conducted via the Hugging Face* platform, and these submissions
are evaluated based on balanced accuracy.

4.1 Dataset

Given that the SAFE challenge is entirely blind and does not pro-
vide any training or development data, we utilized JMAD (JAIST
Multilingual Audio Deepfake) dataset [24]. This dataset comprises
a total of 412,021 speech samples spanning 17 languages, repre-
senting several of the world’s most widely spoken languages. The
majority of the dataset was constructed from open-source resources
[8, 15, 17, 26, 34, 43, 47], with supplementary contributions from
private-source datasets and small portions of internally recorded
speech where open resources lacked sufficient quantity or qual-
ity of human speech. Parts of the private-source data were drawn

4https://huggingface.co/safe-challenge
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from our previous work on spoofing detection in Asian languages
[1, 2,12, 22, 23, 27].

Based on the source of the speech data, the dataset is organized
into two main configurations. The Open Source subset consists
entirely of publicly available corpora and serves as the primary
focus to promote transparency and reproducibility. This subset
encompasses 15 languages: English (eng), Mandarin (zho), Hindi
(hin), Italian (ita), Arabic (arb), Spanish (spa), Polish (pol), German
(deu), French (fra), Russian (rus), Portugese (por), Japanese (jpn),
Ukranian (ukr), Vietnamese (vie), Thai (tha). In contrast, the All
Source configuration includes both open-source and private-source
data, providing supplementary data for four languages (English,
Japanese, Vietnamese, and Thai) and full additional data for two
low-resource languages: Indonesian (ind) and Myanmar (mya).

To reflect real-world conditions where machine-generated
speech often exceeds human speech in volume, the number of gener-
ated utterances in the dataset was set to approximately three times
that of pristine utterances, with a larger portion allocated to Eng-
lish and Mandarin in accordance with their global prevalence. All
audio samples were constrained to a maximum duration with most
samples averaging around 5 seconds, as shown in Fig. 2. To ensure
consistency, all audio was standardized to a 16 kHz, mono-channel
WAV format and rigorously checked for integrity. The finalized data
was then organized into a unified structure with corresponding
metadata, and the partitioning is detailed in Subsection 4.4.

4.2 Evaluation Metrics

The SAFE Challenge evaluates submissions based on three main
metrics: Pristine Accuracy, Generated Accuracy, and Balanced Ac-
curacy. The ‘Pristine’ label denotes authentic audio/ human voice,
while ‘Generated’ indicates synthetic audio. The definitions are as
follows:

.. TP
Pristine Accuracy = ——— (1)
TP + FP
G ted A TN (2)
ner racy = ——————
enerated Accuracy = oo

Pristine Accuracy + Generated Accuracy

2
®)

In evaluation, true positive (TP) is a correctly identified pristine
sample, false positive (FP) is a pristine sample incorrectly labeled
as generated, true negative (TN) is a correctly identified generated
sample, and false negative (FN) is a generated sample incorrectly
labeled as pristine.

In benchmark challenges, Equal Error Rate (EER) and minimum
Detection Cost Function (minDCF) often serve as important metrics
for audio deepfake detection [8]. EER is the point where the False
Acceptance Rate (FAR) and the False Rejection Rate (FRR) of a
system are equal. A lower EER generally indicates a more balanced
and accurate system, as it signifies a threshold where the trade-off
between incorrectly accepting a generated sample as pristine and
incorrectly rejecting a pristine sample as generated is minimized.
On the other hand, the minimum Detection Cost Function (minDCF)
is a more application-aware metric. It considers the costs associated
with both false positives and false negatives, as well as the prior

Balanced Accuracy =
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Table 1: Initial analysis of the RawSpeech-AASIST model,
pre-trained on ASVspoof datasets, when evaluated on Task
1 of the SAFE Challenge. The EER-eval (%) column presents
the EER achieved on the corresponding ASVspoof evaluation
set. Arrows indicates the direction of better performance for
each metric ((T) = higher is better, (]) = lower is better).

EER-eval (%) | Accuracy (%) on SAFE eval. data (task 1)

‘ Training data

) Generated (T) ‘ Pristine (T) ‘ Balanced (T)
ASVspoof2019 0.83 81.00 4.40 42.70
ASVspoof2024 15.20 78.79 16.90 47.84

probability of the target class. By minimizing this cost function
over different operating points (thresholds), minDCF provides a
measure of the best possible performance a system can achieve
under specific operational conditions and cost assumptions.

During model development, we also utilized the Area Under
the Receiver Operating Characteristic Curve (AUC) to determine
an optimal decision threshold for detection. The AUC provides a
measure of the model’s ability to distinguish between the pristine
and generated classes across various threshold settings, allowing
us to select a threshold that balances precision and recall.

Since balanced accuracy determines the leaderboard rankings,
making its improvement is our primary objective. EER, minDCF,
and AUC serve as secondary objective metrics in our experiments.

4.3 Initial Analysis

This section details our initial experimental setup and findings.
As the languages and synthesis techniques in the SAFE challenge
are totally unknown, our initial analysis involved submitting the
pre-trained RawSpeech-AASIST model [16] on ASVspoof 2019 [39]
and trained RawSpeech-AASIST model on ASVspoof 2024 [8]. This
initial analysis served to assess the reference baseline performance
of a model trained on English data from ASVspoof challenges.

Table 1 presents the performance of the RawSpeech-AASIST
model pre-trained on ASVspoof challenge datasets, evaluated on
Task 1 of the SAFE Challenge. The ‘EER-eval’ column indicates
the performance of each pre-trained model on the evaluation set
of its corresponding data source. The RawSpeech-AASIST model
achieved a low EER on ASVspoof 2019, suggesting that this dataset
is relatively easy to fit and its evaluation set is not significantly
different from the training and development sets. In contrast, the
latest ASVspoof 2024, which features a more challenging evaluation
set, resulted in poor performance for the pre-trained RawSpeech-
AASIST model on its corresponding evaluation set (EER of 15.2%).
When these equivalently pre-trained models were evaluated on
SAFE Challenge Task 1, the performance was considerably worse.
The calculated class-wise accuracy revealed a significant imbalance,
with models predominantly classifying input as generated audio.
Specifically, the pristine accuracy was extremely low: 4.40% and
16.90% using pre-trained models which trained on ASVspoof 2019
and ASVspoof 2024, respectively. This tendency to over-predict the
‘generated’ class implies that the SAFE Challenge evaluation data
is much more challenging, likely containing multilingual speech
and diverse, unseen synthesis techniques to which the pre-trained
models have not generalized well.
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Table 2: Distribution of the JMAD dataset into training
(Train), development (Dev), and evaluation (Eval) sets, as
used for model validation during our experiments.

#utts.

Partiti
o || Sl Pristine ‘ Generated ‘ Total
Train 44,442 137,723 182,165
All Dev 24,977 90,852 115,829
Eval 24,547 89,478 114,025
Train 28,981 100,452 129,433
Open Dev 18,269 73,050 91,319
Eval 18,296 73,098 91,394
Train 42,509 96,522 139,031
Clean Dev 17,339 59,795 77,134
Eval 18,296 73,098 91,394

Following this initial analysis, we carefully investigated the train-
ing process and the generalization challenges specifically using
English data. First, regarding pristine data, ASVspoof challenges
predominantly utilized data from single sources, whereas the SAFE
Challenge likely encompasses data from various origins. The qual-
ity of pristine data in the SAFE Challenge might also vary, extend-
ing beyond recordings from controlled settings. Furthermore, the
speakers in ASVspoof datasets are likely from similar geographi-
cal regions. Based on this investigation, we carefully split JMAD
dataset to create a model validation set, the details of which are
explained in the subsequent section.

4.4 Model Validation Set

We partitioned the dataset into three subsets—training, develop-
ment, and evaluation—using a 6:2:2 ratio. The splitting was primar-
ily based on speaker ID and the source dataset. However, we also
considered balancing the distribution of attack ID and gender where
this information was available. This process ensures that each sub-
set maintains a similar distribution of these attributes. Furthermore,
the three subsets are mutually exclusive, with no overlapping audio
samples between them.

We also recognized that low-quality audio data could degrade
model performance by introducing noise during training. To miti-
gate this, we created a separate data partition that was pre-filtered
using Mean Opinion Score (MOS) values obtained from DNSMOS
[32] to purify the training and development sets. This subset, de-
rived from ‘All Source’ was named as the ‘Clean’ partition. Specifi-
cally, we applied thresholds of 2.6 for pristine-all samples and 2.0 for
generated-opensource samples. The lower threshold for generated
audio reflects our intention to retain some low-quality synthetic
audio, as such artifacts are often present in generated audio due
to the synthesis methods. For the evaluation set, we deliberately
avoided any filtering to preserve a more diverse set of audio samples,
ensuring that the final evaluation reflects robustness.

Table 2 shows the distribution of the training, development, and
evaluation sets for all partitioned data used in our experiments.
During pre-analysis, we identified a very small number (less than 5)
of problematic utterances which have been temporarily removed for
the current experiments. In the near future, we plan to investigate
the reasons for these issues and implement a fix.
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4.5 Model Configurations

This section shows some configurations of our primary modules
and the key hyperparameters we tuned during experimentation.

4.5.1 Model Parameterization. AASIST Module: This model di-
rectly processes raw audio waveforms. Its architecture follows the
standard AASIST configuration® [16], which includes a SincNet
layer for front-end filtering, followed by convolutional blocks, self-
attention layers, and a final classification layer. The primary ar-
chitectural parameters are the number and size of convolutional
filters, the number of attention heads, and the dimensions of the
hidden layers. These were largely kept consistent with the original
AASIST paper for a strong baseline.

SSL-RawNet2-AASIST Module: This module integrates self-
supervised learning (SSL) embeddings. We experimented with the
multilingual pre-trained models XLS-R (300M) [4], XLS-R (1B) [4],
and WavLM [6]. The audio was first processed by the SSL model
to extract frame-level embeddings. These embeddings were then
used in two ways: either directly fed into a modified AASIST back-
end (referred to as SSL-AASIST (Direct)), or concatenated with
learned features from a RawNet2 front-end before being processed
by the AASIST architecture (SSL-RawNet2-AASIST). We also ex-
perimented with data augmentation using the RawBoost algorithm,
with our base implementation following the publicly available code®
[35]. The key parameters explored within this module include the
choice of the SSL model and the strategy for integrating its embed-
dings, such as the layer from which embeddings are extracted and
the dimensions of any intermediate projection layers.

4.5.2 Hyperparameter Tuning. During our experiments, we ex-
plored the impact of several key training hyperparameters and
architectural choices, including padding, learning rate, and objec-
tive functions.

The AASIST model requires a fixed input dimension, so all audio
clips were either truncated or padded before being fed into the net-
work. To handle variable-length input audio, we experimented with
different padding strategies and input lengths. Initially, we used
a fixed input length of 64,600 samples, corresponding to approx-
imately four seconds of audio at a 16 kHz sampling rate. Shorter
audio clips were padded with repetition, while longer ones were
truncated. We also experimented with input lengths of 160,000
samples (around 10 seconds), 192,000 samples (around 12 seconds),
and 240,000 samples (around 15 seconds). The fixed input length
was a key hyperparameter we tuned based on the development set
performance. The extension of the padding enables model to access
longer temporal features. This process significantly improved the
model’s classification performance on longer audio clips.

We primarily employed the standard Categorical Cross-Entropy
(CCE) loss for binary classification (pristine vs. generated). The
mathematical function of CCE loss (LccE) is expressed as follows.

N C

. yij log(pij) (4)

Shttps://github.com/clovaai/aasist
Shttps://github.com/TakHemlata/SSL_Anti-spoofing
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where N is the number of samples, C is the number of classes, y;;
is the indicator (0 or 1) if sample i belongs to class j, and p;; is the
predicted probability that sample i belongs to class j.

Additionally, we investigated the use of Weighted Cross-Entropy
(WCE) to address the class imbalance issue between pristine and
generated samples. The weights assigned to each class in the WCE
loss (Lwcg) were tuned based on the class distributions in the
training data.

N C
LwcE = —% Z Z wjyijlog(pij) (5)
i=1 j=1
where w; is the weight assigned to class j.

During training, we optimized our models using the AdamW
optimizer, and we experimented with learning rates of 1074, 1075,
and 107, Our primary objective function for training was the CCE
loss (Eq. 4) or WCE loss (Eq. 5), to minimize the classification error
between pristine and generated audio. The final model selection
and evaluation of generalization capabilities were primarily guided
by the EER achieved on our held-out validation data, as a lower
EER signifies better overall detection performance by balancing
false positives and false negatives.

4.6 Results and Analysis

The primary objective of our experiments was to evaluate the gen-
eralization capabilities of our proposed models for audio deepfake
detection, particularly across diverse languages and unseen spoof-
ing techniques, as relevant to the SAFE Challenge. To achieve this,
we employed a two-stage evaluation process, first assessing per-
formance on JMAD dataset and subsequently on the blind SAFE
Challenge evaluation set.

4.6.1 Overall Performance on JMAD Dataset. Before conducting a
comprehensive evaluation, we trained our models on three different
subsets of the dataset (JMAD-AIl, JMAD-Open, and JMAD-Clean)
as illustrated in Fig. 3. We then selected five representative modules
in our proposed method: RawSpeech-AASIST, SSL-AASIST, SSL-
RawNet2-AASIST, SSL-RawNet2-AASIST with RawBoost augmen-
tation. This comparison highlights the improvements in detection
performance achieved by integrating multilingual self-supervised
learning representations and by combining different architectural
strengths. Within this context, we also investigated the impact of
different SSL models, padding strategies, and other parameters, as
detailed in Subsection 4.5. Table 3 presents the results of the top
five representative systems, showcasing various parameter settings,
assessed on our JMAD-Open dataset.

As overall results, XLSR-RawNet2-AASIST with 10 seconds
padding gave the best performance in the single module evalu-
ation. During our experiments with multilingual SSL models, we
considered XLS-R with both 300M and 1B parameters. However, we
observed that the XLS-R 1B model presented challenges in achiev-
ing high objective scores during the initial training epochs and
demanded significantly more computational time and resources.
Consequently, for practical reasons and to maintain a feasible ex-
perimental scope, we primarily focused our in-depth analyses on
the XLS-R 300M model. We also explored the WavLM model. While
it outperformed the RawSpeech-AASIST model on the JMAD-Open
evaluation set, its performance on the SAFE evaluation set was
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RawSpeech

WavLM-RawNet2

AASIST

RawSpeech
AASIST
4s
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XLSR-RawNet2
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WavLM-RawNet2
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10s

Figure 3: Models trained using various JMAD subsets.

Table 3: Overall performance evaluation on the JMAD-Open dataset. The table presents the top five representative models with

different parameter and architectural configurations.

A Balanced

Front-end Back-end | Padding | Augmentation | Label cc(l;l;acy Acin(c;) AUC (%) | EER (%) | minDCF
Generated 98.97

RawSpeech AASIST | 4s No e — 79.14 93.51 1239 0.22

RawSpeech AASIST | 10s No Generated | 98.84 78.01 9273 13.75 0.24
Pristine 57.17

XLSR-RawNet2 | AASIST | 4s RawBoost Generated | 9979 90.65 97.86 467 0.07
Pristine 81.52

WavLM-RawNet2 | AASIST | 10s RawBoost Generated | 98.06 80.09 95.22 10.99 0.26
Pristine 62.12

XLSR-RawNet2 | AASIST | 10s RawBoost Generated | 99.88 91.14 98.01 421 0.06
Pristine 82.39

poor (around 50% balanced accuracy). Therefore, we also decided
to exclude WavLM from further in-depth evaluation.

Regarding the impact of padding length (4s vs. 10s) in the
RawSpeech-AASIST and SSL-RawNet2-AASIST models, our evalu-
ation on JMAD dataset yielded almost similar results across most
metrics for both durations. However, the evaluation on the SAFE
Challenge Task 1 data revealed a significant improvement (an in-
crease of nearly 10% in balanced accuracy) when using 10s padding
compared to 4s. This trend is also consistent with the behavior
observed in the SSL-RawNet2-AASIST model. While the difference
was not substantial on our evaluation set, this clearly indicates a
different tendency on the unseen SAFE evaluation data. Particu-
larly, utilizing longer audio segments on RawSpeech-AASIST model
achieving up to 66% average accuracy on the challenge test set (task
1). On the other hand, the XLSR-RawNet2-AASIST model reached a
balanced accuracy of 60.72% in task 1. Therefore, for the subsequent
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model combination, we focus on using the longer padding (> 10
seconds).

4.6.2 Analysis of Detection Accuracy by Language and Source
Dataset. To gain deeper insights into the models’ performance
across languages, we conducted a detailed analysis of the detection
accuracy using our best individual model based on overall per-
formance on JMAD-Open: XLSR-RawNet2-AASIST. This analysis
across the 15 languages in our JMAD-Open dataset reveals po-
tential language-specific biases and varying difficulty in detecting
generated audio from existing speech synthesis technologies.
Figure 4 displays the distribution of countermeasure scores for
pristine and generated classes across each language. As illustrated,
most languages exhibit clear separation between the two classes,
achieving a near 100% F1 score, with the notable exception of Man-
darin Chinese (zho). For the pristine class, zho showed the lowest
F1 score at approximately 76%. Conversely, for the generated class,
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Figure 4: Countermeasure (CM) score distributions from the XLSR-RawNet2-AASIST method on the JMAD-Open evaluation
dataset, categorized by language. These plots highlight the discrimination achieved by the method. Some individual datasets
within JMAD contain only one type of data (pristine or generated).
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Figure 5: CM score distributions from the XLSR-RawNet2-AASIST method on the JMAD-Open evaluation dataset, categorized

by dataset source.

we observed particularly poor detection, with an F1 score of only
around 18.14%. We hypothesize that this could be due to the data
for the Chinese portion originating from the ADD 2022 corpus
[43], which is known to contain a significant amount of noisy and
low-quality data. This characteristic likely also explains why many
systems struggled to achieve high detection rates in the ADD chal-
lenges, with the lowest EER achieved by top performers in Track 1
being just 21.7%.

Furthermore, we examined the model’s performance based on the
source datasets within our training corpus, aiming to understand
its ability to generalize beyond specific data origins and synthe-
sis methods. Figure 5 displays the distribution of log-likelihood
scores for pristine and generated classes for each source dataset.
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The results show a similar trend to the language analysis, likely be-
cause some languages are predominantly sourced from a particular
dataset. Most datasets achieved high accuracy (nearly 100%) in dis-
tinguishing both pristine and generated classes, with the exception
of ADD, which hovered around 76% in F1 score of generated class.
It is important to note that we treated AISHELL-3 (only pristine
data) and ADD (only generated data) separately, which differs from
the actual ADD challenge that includes AISHELL pristine data. This
analysis helps pinpoint areas where the model performs well and
where further improvements may be necessary.

4.6.3 Robustness Against Unseen Generated, Processed, and Laun-
dered Data. Finally, we evaluated the robustness of our models
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Figure 6: Hybrid prediction model creation: Two top-
performing individual models are selected for combination.

on SAFE evaluation which includes unseen generated audio (Task
1), processed audio (Task 2) and laundered audio (Task 3). This
involved assessing the detection accuracy on audio samples that
have undergone various transformations, such as the application
of noise or filtering, to mimic real-world degradation. The results
in this section will demonstrate how robust our proposed hybrid
method on unseen evaluation data.

Table 4 presents the detection accuracy of the best perform-
ing RawSpeech-AASIST module and XLSR-RawNet2-AASIST mod-
ule. Generally, the non-hybrid AASIST model trained solely on
RawSpeech yielded higher performance than those incorporating
SSL models without augmentation (Task 1). However, when the au-
dio underwent processing such as codec changes or noise addition,
or was “laundered” through artifact reduction methods, the XLSR-
RawNet2-AASIST model demonstrated better performance (Task
2 and Task 3). Subsequently, adjusting the classification threshold
resulted in an average accuracy improvement of approximately 2%.

We implemented our proposed hybrid framework, illustrated in
Fig. 6, by combining the top-performing RawSpeech-AASIST (RA12,
trained on JMAD-Open) and XLSR-RawNet2-AASIST (XRA10RB,
trained on JMAD-Clean) modules. Following the procedure detailed
in Subsection 3.4, we first normalized the countermeasure scores
from each module and then fused them using a weighted decision
layer. This adaptive fusion mechanism allows the hybrid system to
effectively leverage the complementary strengths of both individual
models to generate a final prediction.

This hybrid approach resulted in further gains in balanced accu-
racy, although this improvement came with the expected trade-off
of increased inference time. Specifically, incorporating the XLSR
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model in the front-end processing led to a substantial increase in in-
ference time, approximately tripling it. Our best-performing hybrid
method achieved balanced accuracies of 72.91%, 73.39%, and 65.85%
for Tasks 1, 2, and 3, respectively. As we currently lack access to the
audio data of the SAFE Challenge evaluation set, a more detailed
analysis of the results beyond balanced accuracy is not possible at
this stage. We plan to conduct a more comprehensive evaluation
once the official challenge outcomes are made available.

5 Conclusion

This paper addressed the critical challenge of robust multilingual
audio deepfake detection, particularly within the SAFE Challenge
framework. We utilized multilingual and multi-source speech cor-
pus (17 languages) to develop robust detection models. Our pro-
posed hybrid detection model strategically combined the strengths
of end-to-end models (i.e., RawNet, AASIST) and the language-
agnostic representations learned from multilingual self-supervised
learning. We also explored the benefits of data augmentation with
RawBoost to enhance robustness against real-world noise.

Our experimental results, including a detailed analysis of gen-
eralization across languages and spoofing algorithms, highlighted
the limitations of models trained on monolingual datasets when
faced with diverse, unseen data, as often encountered in real-world
scenarios (represented by the SAFE Challenge evaluation data).
The performance of our hybrid model demonstrated promising
improvements in overall detection, suggesting the effectiveness
of integrating multilingual SSL representations and leveraging a
diverse language training corpus.

In conclusion, this work offers valuable insights into multilingual
deepfake detection and introduces a promising hybrid modeling
strategy to address the increasing global challenge. Future research
will build upon these findings, focusing on further analysis and
enhancement of the generalization capabilities of advanced detec-
tion methods, particularly in the context of multilingual scenarios
highlighted by our evaluation.

Data Availability Statement

The JAIST Multilingual Audio Deepfake (JMAD) dataset that uti-
lized for this study includes data from both publicly available and
private sources. A list of the publicly available datasets used, along
with relevant citations can be found in Subsection 4.1. Due to the
inclusion of proprietary data from collaborative projects, the full
dataset cannot be made publicly available. However, aggregated
statistics and analyses of the dataset are provided within the pa-
per to support our findings. Researchers interested in replicating
our work are encouraged to utilize the described publicly available
resources.
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Table 4: Comparison of the detection performance of our best two individual modules and their hybrid fusion on the SAFE
Challenge evaluation (Task 1: generated, Task 2: processed, Task 3: laundered).

Task | Hybrid | ID Model Description Partition Generate dA‘c i::::f;l i%‘) Balanced Time (s)
No RA12 RawSpeech-AASIST (12s) Clean 64.86 67.20 66.03 162.98
1 No XRA10RB | XLSR-RawNet2-AASIST (10s) with augmentation | Open 49.00 72.45 60.72 440.13
Yes HYB2 RA12+XRA10RB Mix 53.57 92.25 72.91 585.26
No RA12 RawSpeech-AASIST (12s) Clean 39.14 72.30 55.72 178.67
2 No XRA10RB | XLSR-RawNet2-AASIST (10s) with augmentation | Open 61.77 80.40 71.08 599.48
Yes HYB2 RA12+XRA10RB Mix 69.62 77.15 73.39 822.98
No RA12 RawSpeech-AASIST (12s) Clean 48.86 68.20 58.53 161.37
3 No XRA10RB | XLSR-RawNet2-AASIST (10s) with augmentation | Open 47.57 80.40 63.99 446.27
Yes HYB2 RA12+XRA10RB Mix 54.86 76.85 65.85 570.47
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