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Abstract—Deepfake speech, an advanced use of speech 

synthesis technology, presents a considerable challenge due to 

its highly realistic sound and the complexities involved in 

detecting it. The selection and analysis of effective features are 

essential for enhancing spoof detection capabilities. This study 

focuses on analyzing pathological features within the Myanmar 

Spoof Dataset. Spoofed speech in the dataset is created using five 

distinct techniques: vocoder methods with HiFiGAN and 

Parallel WaveGAN, pre-trained voice conversion via FreeVC, 

and GMM-based and Differential GMM-based voice conversion 

(GMMVC_DIFF) methods. In this paper, we perform a 

comparative analysis of pathological features, including 

Harmonics-to-Noise Ratio (HNR), six types of jitter, and seven 

shimmer features. Additionally, Cepstral Peak Prominence 

(CPP) features were assessed under both voiced and unvoiced 

speech conditions. The analysis demonstrates that these features 

show substantial variations across different spoofing 

techniques. Specifically, the voice conversion methods 

GMMVC_DIFF show notable differences in these features. 

These results highlight the pivotal role of these pathological 

features in enhancing the precision of future spoof detection 

systems. 

Keywords—spoof detection, speech synthesis, Myanmar spoof 

dataset, pathological features, cepstral peak prominence features 

I. INTRODUCTION 

Deepfake speech involves the unethical use of advanced 
speech technologies, such as voice conversion and text-to-
speech methods, to create synthetic and deceptive audio 
content [1-3]. Due to its highly realistic nature and the 
significant challenges associated with detection, deepfake 
speech poses a substantial threat to economic systems and 
societal stability. Fake Audio Detection (FAD) technologies 
are essential in protecting Automatic Speaker Verification 
(ASV) systems from spoofing attacks, including voice 
conversion, replay, and text-to-speech. These technologies 
identify and filter out synthetic or manipulated audio that 
could compromise ASV integrity. In FAD, the analysis of 
pathological features and CPP is crucial, alongside 
advancements in deep learning and acoustic feature 
extraction.  

In the literature, acoustic features such as mel-frequency 
cepstrum coefficients (MFCC), modified group delay 
function, and cos-phase have been key in anti-spoofing efforts 
[4]. LFCC features [5] provide a linear frequency perspective, 
while constant-Q cepstral coefficients (CQCC) [6] offer 
detailed frequency analysis, especially in the low-frequency 
range.  The authors [7] proposed using pathological features 
to analyze deepfake speech, suggesting that these features 

could reveal similarities to disordered voices. This paper 
focused on six key features: jitter, shimmer, HNR, Cepstral 
Harmonics-to-Noise Ratio (CHNR), Normalized Noise 
Energy (NNE), and Glottal-to-Noise Excitation Ratio (GNE). 

We investigated fourteen pathological features, including 
six jitter metrics, seven shimmer metrics, HNR, and two CPP 
features, considering both voiced and unvoiced speech in the 
Myanmar spoof dataset. These features were selected for their 
ability to capture subtle variations in pitch, amplitude, and 
noise characteristics, indicative of synthetic manipulation in 
deepfake speech. By conducting a comparative analysis, we 
aimed to identify the most effective features for detecting 
nuanced alterations in speech patterns, which is crucial for 
developing robust countermeasures against deepfake speech 
and protecting the integrity of ASV systems. This paper is part 
of the ASEAN IVO 2023 project, “Spoof Detection for 
Automatic Speaker Verification,” which aims to apply 
reliability of speaker verification using the new UCSY Spoof 
dataset and significant features for the Myanmar language. 

 
The contributions of this study can be outlined as follows: 

1. Comprehensive analysis that performed an in-depth 
evaluation of fourteen pathological features. 

2. Assessment of CPP features in detecting subtle alterations 
in speech patterns. 

3.  Identification of significant feature variations: discovered 
notable variations across different spoofing techniques, 
enhancing the precision of spoof detection systems. 
 

The organization of this paper is as follows: Section 2 

provides a comprehensive overview of the five different 

Myanmar Spoof Dataset, collectively named UCSYSpoof. 

Section 3 details the system design employed for the feature 

analysis process. Section 4 discusses the implementation of 

pathological features and CPP features. Section 5 presents and 

analyzes the results obtained from these features, 

accompanied by relevant discussions. Finally, Section 6 

concludes the study by summarizing the key findings and 

contributions.  

II. UCSYSPOOF DATASET 

This section outlines an overview of the UCSYSpoof 
dataset, which includes five distinct subsets tailored for 
spoofing detection in ASV tasks. The dataset features both 
genuine and spoofed speech samples. The genuine portion 
comprises 12,000 utterances, equally distributed among three 
female speakers, with 4,000 utterances per speaker. The 
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spoofed portion, consisting of 63,932 utterances, is generated 
using five sophisticated techniques. These techniques involve 
vocoder methods powered by HiFi-GAN and parallel 
WaveGAN [21], voice conversion through the pre-trained 
FreeVC model, and both GMM-based and Differential GMM-
based voice conversion strategies. Summary of each technique 
used in the UCSYSpoof dataset is provided in Table I. 

TABLE I.   

DETAILED STATISTIC OF UCSYSPOOF DATASET 

Label Dataset Type No. of Utterances 

Genuine Genuine dataset 12,000 

 

 

 

Spoofed 

HifiGAN 11,966 

Parallel WaveGAN 11,966 

FreeVC pretrained dataset 24,000 

GMM VC dataset 8,000 

GMM DIFFVC dataset 8,000 

 

To develop a vocoder-based dataset, two GAN-based 
neural vocoders, HiFi-GAN and Parallel WaveGAN, were 
utilized, both specifically trained on Myanmar speech data 
[21]. HiFi-GAN [8] comprises a fully convolutional neural 
network generator with multi-scale and multi-period 
discriminators, enabling efficient, high-fidelity speech 
synthesis. Meanwhile, Parallel WaveGAN [9] offers a 
lightweight, fast waveform generation approach that avoids 
distillation, achieving realistic synthesis by optimizing 
adversarial loss in the waveform domain alongside a multi-
resolution short-time Fourier transform (STFT) loss, thus 
eliminating the need for complex probability density 
distillation. 

The FreeVC-based dataset, presented in TABLE I, was 
generated using FreeVC [10], a text-free, one-shot voice 
conversion system. FreeVC leverages a pre-trained WaveLM 
[11] to extract content information by applying an information 
bottleneck, without requiring text annotation, and adopts the 
end-to-end architecture of VITS. GMM-based voice 
conversion (VC) methods use parallel speech utterances from 
source and target speakers. This section highlights two 
common approaches: the maximum likelihood parameter 
generation (MLPG) with global variance (GV) and the 
vocoder-free log-spectral differentiation method (DIFFVC). 
Typically, the VC process involves two stages: training and 
conversion. The objective is to learn a mapping function from 
training data that transforms test features of the source speech 
(including prosodic and spectral features) into the acoustic 
space of the target speech [12]. 

III. FEATURES ANALYSIS 

This paper presents five datasets developed specifically 
for the Myanmar Spoof Dataset, aimed at facilitating the 
analysis of deepfake speech. Figure 1 illustrates the system 
architecture, outlining the stages of data preprocessing, feature 
extraction, and classification. These stages are crucial for 
understanding how the extracted features contribute to 
identifying spoofed speech. For instance, during the feature 
extraction stage, this experiment computes measures such as 
jitter, shimmer, Harmonics-to-Noise Ratio (HNR), and 
Cepstral Peak Prominence (CPP). These features are sensitive 
indicators of vocal quality, with jitter, shimmer, and HNR 
highlighting irregularities in pitch and amplitude, while CPP 

assesses the clarity and prominence of the speech harmonic 
structure. Together, they can reveal subtle inconsistencies 
indicative of deepfake manipulation. 

  

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

IV. PATHOLOGICAL FEATURES AND CPP FEATURES 

 This section details the implementation of pathological 
and CPP features. Pathological features are vocal 
characteristics that reveal abnormalities or disorders [13]. In 
spoof datasets, these features help identify differences 
between genuine and manipulated speech. They include 
irregular pitch, hoarseness, vocal tremor, reduced 
loudness,and altered vocal quality. Analyzing these deviations 
can detect if a voice signal has been altered or synthesized. In 
this comparative experiment, we utilized three pathological 
features: HNR, jitter and shimmer [14],[15]. These features 
are crucial for differentiating between authentic voice 
recordings and deepfake speech, thereby enhancing voice 
authentication systems. 

A. Harmonics-to-noise ratio (HNR) 

HNR provides insight into the periodicity and stability of 
the voice, which can be useful for detecting voice 
abnormalities or manipulations, such as deepfake speech. The 
noise component (ιEn) is calculated as the energy of the 
residual obtained by subtracting the mean waveform from 
each cycle. The harmonic energy (γEn) is derived from the 
energy of the average waveform constructed synchronously 
over ten consecutive glottal cycles within a frame pitch. 
Therefore, this feature relies on a prior estimation of f0 [20]. 
Here are key HNR features: 

��� = 20 �	
 ���
�� �                                             (1)                              

B. Jitter Features 

 Jitter is a fundamental parameter in voice analysis, 
particularly effective in identifying irregularities in speech 
signals. It evaluates the fluctuations in the fundamental 
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Figure 1. System Design for Comparing Datasets and Features 
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frequency from one cycle to the next, which may indicate 
voice instability or synthetic manipulation [16],[17]. This 
research focuses on six distinct types of jitter, as detailed 
below. 

1) Jitter (local) quantifies the average absolute variation in 
fundamental frequency between consecutive periods within a 
short speech segment. The calculation is given by: 

������ ��	���� =  �
���  ∑ |� � � !"|

"
#  ∑ � # $"

 × 100���'(�                   (2) 

where Ti represents the fundamental frequency period lengths, 
and N is the number of periods analyzed. 

 2) Local Absolute Jitter measures the average absolute 
deviation in fundamental frequency between consecutive 
cycles, which may indicate voice manipulation or spoofing. 
The calculation is as follows: 

    ������ ��	���� =  �
���  ∑ |� � � !"|

"
#  ∑ � # $"

 × 100���'(�                 (3) 

where Ti denotes the period lengths of the fundamental 
frequency, and N represents the total number of periods 
analyzed. 

 3) Jitter (rap) is calculated as the average absolute 
difference between a given period and its two neighboring 
periods, normalized by the average period. It is defined as: 

�)* =  �
�  ∑ |+ � + !"|

"
#  ∑ + # $"

 × 100�'(�                                                 (4) 

where Ai represents the amplitude of the i-th period, and N is 
the number of periods analyzed. 

 4) Jitter (ppq5) evaluates as the average absolute deviation 
between a period and its average, including the five nearest 
periods, divided by the average period. It is defined as: 

**,5 =  �
��.  ∑ |� � � !/|

"
#  ∑ � # $"

 × 100��.'(�                                        (5) 

where Ti denotes the fundamental frequency periods, and N 
represents the total number of periods analyzed. 

 5) Jitter (DDP) measures pitch variability by analyzing the 
changes between consecutive pitch variations, making it 
sensitive to subtle irregularities from spoofing techniques. The 
calculation is given by: 

00* =  �
��1  ∑ |��2'3� −  2'� − �2'31 − 2'3���|��1'(�             (6) 

where Ti represents the fundamental frequency periods, and N 
is the number of periods analyzed. 

 6) Jitter (PCA) uses dimensionality reduction to identify 
principal components that capture the most variance in pitch 
data, aiding in distinguishing normal speech from spoofed 
speech by revealing key patterns in jitter features. 

C. Shimmer Features 

Shimmer features evaluate amplitude variations in voice 
signals, providing critical insights into vocal intensity stability 
and facilitating the detection of irregularities that may signal 
pathological conditions or manipulations, such as deepfake 
speech. This study emphasizes seven specific shimmer 
features, detailed as follows: 

1) Local Shimmer measures the average absolute 
difference in amplitude between consecutive pitch periods 
within a short segment of speech. It is calculated as: 

5ℎ�77�� ��	���� =  
"

#8"  ∑ |+ � + !"|#8" $"
"
#  ∑ + # $"

 × 100              (7) 

where Ai represents the amplitude at the i-th period, and N is 
the number of periods. 

2) Local Shimmer (dB): Local shimmer in decibels 
normalizes the amplitude differences by converting them into 
a logarithmic scale. It is calculated as: 

5ℎ�77�� ��	���, :;� =  
"

#8"  ∑ 1< =>?"@A B 
B !"C#8" $"

"
#  ∑ + # $"

 × 100     (8) 

 3) APQ3 (Average Perturbation Quotient 3) measures 
amplitude perturbations over a window of three consecutive 
periods. It is computed as: 

)*,3 =  �
��1  ∑ |+ �1+ !"3+ !E|

+ 3 + !"3+ !E
 × 100��1'(�                           (9) 

where Ai represents the amplitude at the i-th period.  

 4) APQ5 (Average Perturbation Quotient 5) extends the 
concept of APQ3 to a window of five consecutive periods. 

 5) APQ11 (Average Perturbation Quotient 11) analyzes 
amplitude perturbations across eleven consecutive periods, 
offering a detailed view of longer-term variations in voice 
intensity. 

 6) Shimmer (DDA) calculates the differences between 
consecutive amplitude differences. It is expressed as: 

00) =  �
��1  ∑ |�)'3� − )'� − �)'31 − )'3��|��1'(�    (10) 

 7) Shimmer (PCA) transforms the original features into 
uncorrelated components, simplifying the analysis and 
interpretation of complex shimmer patterns. 
 Cepstral Peak Prominence (CPP) is an important feature 
in voice analysis, providing insights into the periodicity and 
quality of speech signals [18]. It is particularly useful for 
differentiating between voiced and non-voiced segments. A 
brief overview of CPP for voice and non-voice detection as 
follows: 

 1) CPP for Voice Detection 

 CPP quantifies the prominence of the cepstral peak 
relative to the surrounding cepstral coefficients. 

  It is computed as follows: 
 

F** =  GHIJK� LMN�O PIQJRPO
STN�UNVU WMX'NT'Y�O PIQJRPO

                                          (11) 

where Ppeak represents the amplitude of the cepstral peak, and 
Meansidebands and Standard Deviationsidebands are the mean and 
standard deviation of the cepstral coefficients in the regions 
adjacent to the peak (sidebands). 

 2) CPP for Non-Voice Detection 

 The CPP is calculated similarly, focusing on lower values 
to assess periodicity. Low CPP values suggest minimal 
cepstral peak prominence, indicating non-voiced segments 
like silence or background noise. A lower CPP threshold helps 
identify areas with minimal voice activity. 

V. FEATURES RESULTS AND DISCUSSION 

 This analysis is conducted on 100 randomly selected 
samples using five methods: HifiGAN, ParallelWaveGAN, 
and three voice conversion techniques. Each voice conversion  
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method is further divided into two types: VC12 (converting 
from speaker_1 as the source to speaker_2 as the target) and 
VC13 (converting from speaker_1 as the source to speaker_3 
as the target). Additionally, the study incorporates two 
variants of GMMVC (VC12 and VC13) as well as two 
variants of GMMVC_Diff (VC12 and VC13). In total, the 
study examines eight distinct dataset types. Detailed 
information about the datasets used in the experiment is 
provided in Table II. 

TABLE II.   

DETAILED EXPERIMENT OF DATASETS 

Label Dataset Type 

 

 

Spoofed 

HifiGAN 

ParallelWaveGAN 

VC12 (FreeVC) 

VC13 (FreeVC) 

GMMVC12 (GMMVC) 

GMMVC13 (GMMVC) 

GMMVC12_DiffVC 

GMMVC13_DiffVC 

A. Experiment results 

The comparative analysis utilized a total of sixteen 
features: fourteen pathological features and two CPP features, 
extracted from eight distinct dataset types. For the extraction 
of jitter, shimmer, and HNR features, we employed Python for 
analysis. The extraction of the CPP features was conducted 
using Praat [19].  

Fig. 2 presents comparative results of Harmonics-to-Noise 
Ratio (HNR) features across eight datasets. The analysis 

reveals noticeable variations in HNR values among the 
different datasets. Notably, while HNR values for the 
HifiGAN and ParallelWaveGAN datasets exhibit some 
differences, these variations are not statistically significant, 
suggesting that both methods produce similar levels of 
harmonic clarity. 

In contrast, the voice conversion techniques, particularly 
GMMVC_DIFF applied to VC12 and VC13, demonstrate 
substantial differences in HNR features. The GMMVC_DIFF 
method yields higher HNR values, indicating improved vocal 
quality and a more robust ability to preserve harmonic content 
compared to the other techniques. This suggests that 
GMMVC_DIFF is particularly effective in enhancing the 
naturalness and intelligibility of the converted speech. 
 Fig. 3 shows Jitter features, including Jitter (local), Jitter 
(local absolute), Jitter (RAP), Jitter (PPQ5), Jitter (DDP), and 
Jitter (PCA), as illustrated. In Fig. 3 displays significant 
features results, with GMMVC showing notable significance 
compared to other methods. Jitter (local) and Jitter (local 
absolute) on VC12 and VC13 reflect the short-term frequency 
instability in the speech signal, indicating minor variations in 
vocal fold vibrations. Jitter (PPQ5) shows increased 
significance, highlighting the average perturbation across 
multiple cycles, which is crucial in detecting subtle voice 
abnormalities. The most pronounced differences are observed 
in Jitter (RAP) and Jitter (DDP), which measure relative 
average perturbation and absolute cycle-to-cycle variation, 
respectively, providing deeper insights into irregularities in 
vocal fold vibration. Lastly, Jitter (PCA) demonstrates its 
relevance by capturing the principal components of jitter 
variations, summarizing complex patterns in the voice data.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Comparative results for HNR features 

GMMVC_13_DIFFVC 
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 Fig. 4 presents line graphs for the key Shimmer features, 
including Shimmer (local), Shimmer (local dB), Shimmer 
(APQ3), Shimmer (APQ5), Shimmer (APQ11), Shimmer 
(DDA), and Shimmer (PCA), as shown. In Fig. 4 illustrates 
significant features results for Shimmer features, highlighting 
the prominence of GMMVC_Diff compared to other methods. 
Shimmer (local) and Shimmer (local dB) in VC12 and VC13 
capture short-term amplitude variability in the speech signal, 
revealing fluctuations in vocal intensity. Shimmer (APQ3) 
shows even greater significance in both GMMVC and  
GMMVC_Diff, reflecting the averaged amplitude 
perturbations over three cycles, which is crucial for 
identifying subtle irregularities in voice quality. The most 
substantial differences are observed in Shimmer (APQ5) 
within the HifiGAN and GMMVC_Diff methods, 

representing the average amplitude perturbation over five 
cycles, and highlighting the sensitivity of these methods to 
voice disturbances. Additionally, Shimmer (APQ11) and 
Shimmer (DDA) in GMMVC_Diff exhibit notable 
significance, with Shimmer (APQ11) measuring amplitude 
variability over eleven cycles, and Shimmer (DDA) focusing 
on the average difference between the absolute differences of 
amplitudes. Finally, Shimmer (PCA) captures the principal 
components of Shimmer variations, summarizing complex 
amplitude perturbations within the voice data, and also shows 
significant distinctions across the datasets. 
 Fig. 5 presents significant features for CPP feature, 
comparing Voice Detection and No Voice Detection, as 
illustrated below.

 

 

 

 

Jitter (Local) 

Jitter (LocalAbsolute) 

Jitter (rap) Jitter (ppq5) 

Jitter (ddp) Jitter (pca) 

Figure 3. Significant features results for Jitter features 
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                Figure 4. Significant features results for Shimmer features 

CPP (Voice Detection) 
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B. Discussion on Features of the Experiments 
In the analysis of the Myanmar spoof datasets features, 

significant variations were observed in HNR, Jitter, Shimmer, 
and CPP features across different methods, highlighting their 
importance in spoof detection. While the differences between 
HifiGAN and ParallelWaveGAN were relatively minor, the 
voice conversion techniques, particularly GMMVC_DIFF 
(VC12 and VC13), exhibited notable distinctions. These 
features are critical in differentiating between genuine and 
spoofed speech signals. 

Jitter and Shimmer features are particularly effective in 
detecting inconsistencies in vocal fold vibrations that are often 
indicative of spoofing. GMMVC_DIFF, in particular, 
displayed the most pronounced differences in these features, 
making it a powerful tool for identifying minor perturbations 
that might go unnoticed with other methods. Jitter features, 
such as Jitter (local) and Jitter (RAP), focus on variations in 
pitch, providing insights into the stability of vocal fold 
vibrations, while Shimmer features, such as Shimmer (local) 
and Shimmer (APQ5), highlight amplitude fluctuations that 
can signify irregularities in the vocal signal intensity. 

CPP further enhances spoof detection by serving as a key 
indicator of voice quality. CPP effectively measures the 
prominence of the cepstral peak, which correlates with the 
perceived clarity and robustness of a voice. In both voice and 
no-voice detection scenarios, CPP exhibited significant results 
across various methods, particularly in the GMMVC and 
GMMVC_DIFF techniques, underscoring its critical role in 
identifying subtle differences in voice quality that are often 
exploited in spoofing attacks. 
 Collectively, these features provide a robust framework 
for detecting spoofed speech, enabling more accurate 
differentiation between authentic and synthetic audio. 

VI. CONCLUSION 

Based on the evaluation, this study highlights the 
importance of pathological features, specifically HNR, jitter, 
shimmer, and CPP, in effectively distinguishing genuine voice 
recordings from deepfake speech. The analysis demonstrates 
that these features show significant variations across various 
spoofing techniques. The experimental results reveal that 
voice conversion methods, particularly GMMVC_DIFF 
(VC12 and VC13), exhibit pronounced differences in these 
features. This indicates their effectiveness in detecting subtle 
anomalies that are indicative of spoofing. Jitter and shimmer 
features, which measure short-term pitch variations and 
amplitude fluctuations, respectively, are highly effective in 
identifying inconsistencies in vocal fold vibrations and voice 
intensity.These features are sensitive to the subtle deviations 
often introduced during spoofing processes. Meanwhile, CPP 
enhances spoof detection by evaluating voice quality and 

revealing subtle discrepancies that may be exploited in 
spoofing attacks. The ability of these features to discern subtle 
variations in speech signals is fundamental to the 
advancement of effective spoof detection systems. 
 The proposed features analysis effectively identifies and 
leverages significant features derived from five distinct 
spoofing techniques, demonstrating robust performance in 
differentiating between genuine and spoofed speech using 
pathological and CPP features. However, the efficacy of these 
features may diminish in certain contexts, particularly in 
environments characterized by significant background noise 
or poor audio quality. To address these challenges, future 
research should focus on the integration of additional features 
and the development of more advanced models to enhance the 
system's robustness and generalizability. 
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