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Abstract. With the rapid development of artificial agents, more
researchers have explored the importance of user engagement level pre-
diction. Real-time user engagement level prediction assists the agent in
properly adjusting its policy for the interaction. However, the existing
engagement modeling lacks the element of interpersonal synchrony, a
temporal behavior alignment closely related to the engagement level.
Part of this is because the synchrony phenomenon is complex and hard
to delimit. With this background, we aim to develop a model suitable for
temporal interpersonal features with the help of the modern data-driven
machine learning method. Based on previous studies, we select multiple
non-verbal modalities of dyadic interactions as predictive features and
design a multi-stream attention model to capture the interpersonal tem-
poral relationship of each modality. Furthermore, we experiment with
two additional embedding schemas according to the synchrony defini-
tions in psychology. Finally, we compare our model with a conventional
structure that emphasizes the multimodal features within an individual.
Our experiments showed the effectiveness of the intra-modal inter-person
design in engagement prediction. However, the attempt to manipulate
the embeddings failed to improve the performance. In the end, we dis-
cuss the experiment result and elaborate on the limitations of our work.

Keywords: Engagement Modeling · Interpersonal Synchrony ·
Attention Model

1 Introduction

Researchers have come to realize the importance of engagement prediction in the
area of virtual communications and human-robot interaction. The engagement
level has been a crucial factor in interaction diagrams. For example, an embodied
conversational agent needs to adjust the interaction strategy based on the current
engagement level of the subject. Many studies have been conducted based on
various modalities via rule-based measurements or machine learning to predict
engagement levels [21]. However, synchrony, a prosocial behavior phenomenon [3]
which is closely related to high engagement, has not received enough attention in
engagement modeling. Despite being a widely observed phenomenon, synchrony
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is complex and challenging to define and delimit by rule-based methods. With
the rapid development of data-driven deep learning, stunning progress has been
made for numerous problems that are also hard to define and delimit with,
such image classification tasks and content generation tasks. We believe that the
modern deep learning model can capture the synchrony features and improve
the prediction accuracy of engagement levels.

This paper introduces an intra-modality attention-based model for dyadic
interaction real-time engagement level prediction. We first introduce the related
concepts and the most influential works on engagement modeling. Then, we
describe our model and evaluate its performance.

2 Related Works

2.1 Engagement and Synchrony

Nadine G. and Catherine P. have conducted an in-depth survey on the engagement
for human-agent exchange [11]. There are many definitions in the literature focus-
ing on various perspectives and targets. For example, Dan Bohus and Eric Horvitz
describe engagement as “The process subsuming the joint, coordinated activities
by which participants initiate, maintain, join, abandon, suspend, resume or ter-
minate an interaction” [4]. In contrast, Poggi regarded engagement as “The value
that a participant in an interaction attributes to the goal of being together with the
other participant(s) and of continuing the interaction” [22]. Yu et al. [28] defined
engagement in the voice communication system as “User engagement describes
how much a participant is interested in and attentive to a conversation.” Engage-
ment can be observed multimodally from both verbal and non-verbal features. For
example, engagement detection has been studied on prosodic features and emo-
tions from speech [28], as well as facial expression, smile and gaze [10].

Synchrony is the temporal alignment among the participants during social
interaction. Frank J. B and his colleagues defined synchrony as “The coordina-
tion of movement between individuals in social interactions” [2]. In loose terms,
synchrony is similar to interpersonal coordination - “the degree to which the
behaviors in an interaction are non-random, patterned, or synchronized in both
timing and form” [3]. In later works, researchers viewed synchrony as a simul-
taneous synchronization of behaviors [15,23]. There are other similar concepts,
such as the chameleon effects [6], co-occurrence [18], mimicry [7]. Synchrony
has positively affected building rapport [25], smoothing social interactions [17],
and promoting cooperation [27]. Emilie Delaherche et al. [9] have conducted an
excellent survey on interpersonal synchrony for more insights.

2.2 Deep Learning Engagement Models

In the early stage of engagement prediction, researchers took a single image
or frame from a video to predict the engagement level. For example, Omid
Mohamad Nezami et al. [20] proposed a VGG-B [24] style deep neural network.
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Their work was trained and evaluated on individual frames sampled from stu-
dent study videos. Their model showed improved results over the histogram of
oriented gradients and support vector machines [8]. Later, researchers included
temporal information into consideration. For example, Hadfield et al. [12] studied
child-robot attention tasks with long short-term memory (LSTM) models [14]
and showed that temporal dynamics are crucial for engagement level prediction
as LSTM models outperformed stationary classifiers.

Other approaches predicted engagement from modality features instead of
video. In [1], a human-agent engagement prediction, employed a RESNet-18 [13]
model as the backbone to extract attention signals from the gaze and head
pose. Then they predicted the engagement level through rule-based policies on
body postures and extracted attention signals. In [16], a student engagement
prediction task over online lecture scenarios, the authors took face frames and
facial landmarks for a fully connected neural network. In addition, they also used
head pose and eye gaze features and fed them into a LSTM model. These works
have studied the non-verbal features practical for engagement level prediction.
Lastly, Soumia D. and Catherine P. [10] used gaze, head rotation, and facial
action unit features and fed them into an LSTM model in a dyadic interaction
engagement prediction task on NoXi dataset [5]. Their study consists of three
models: target LSTM, partner LSTM, and dyadic LSTM. The result showed
that additional information from the interaction partner boosted the prediction
accuracy.

3 Methods

The task of our experiments is to predict the target participant’s real-time
engagement level from both interaction participants’ modality features as input.
We hypothesize that synchrony manifests as a form of feature similarity. The
question becomes what kind of similarity and which time frame to compare the
similarity. Different from refined features like the binary features of presence of
smiling or other behaviors, measuring the similarity of sensor data such as face
mesh is very challenging from the definition. We adopt a multi-stream deep neu-
ral network to let data speak for itself to extract similarity (Sect. 3.1 and 3.2).
As for the time frame, we manually manipulate the embedding phrase of the
network to control the feature grouping (Sect. 3.3) (Fig. 1).

3.1 Overall Structure

The overall model design follows multi-stream late-fusion scheme as shown in
Fig. 2. The intuition is to allow the model to extract temporal synchrony features
that reside within each modality between two participants. The multi-stream
structure process the multi-modalities inputs in isolation. The intuition behind
seeking temporal associations within the same modality is from the definitions of
synchrony. Running in isolation avoids cross-modality learning that is not related
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Fig. 1. Task Overview - We obtained facial landmarks, body skeletons, head orienta-
tions, and action units from the NoXi dataset as input features. The model will take
four modalities sequence from present to past within a preset window length as input
to predict the engagement level of the present sample.

Fig. 2. Model Overview - Each modality sequence is fed into a separate parallel model,
and the outputs are concatenated for the final prediction. All parallel models have
identical structures (shown in Fig. 3) but with different layer dimensions adjusted for
the input modality.



Inter-person Intra-modality Engagement Prediction 95

to synchrony. The main mechanism adopted for parallel models is the multi-
head self-attention block. Attention models are incredibly flexible in learning
temporal relationships. However, it also requires more training data to learn the
attention matrix than models with built-in inductive bias. To tackle this issue,
we designed two other embedding approaches to reduce the complexity of the
attention matrix.

3.2 Multi-head Self Attention Backbone Model

Fig. 3. Parallel Model Structure - The model takes the modality sequence as input,
embeds them into patches (Embedding detail in Fig. 4), and processes the patches via
a standard transformer block. A typical learnable “class token” patch is added to the
sequence, serving as the parallel model fusion output.

Inspired by the fantastic work of ViT [19], we considered modality information
as a series of “words” embedded and processed them with a transformer [26]
encoder. Figure 2 illustrates the general structure of our parallel models. Modal-
ity sequences are first embedded into patches, applied positional embeddings,
and processed by attention blocks. The flexibility of the attention mechanism
comes from its learnable attention matrix. Embedded patches are first projected
into matrices Q, K, and V with the exact dimensions P by L, where P the num-
ber of patches and L is the length of the embedding (Eq. 1). Then, the attention
matrix is the matrix multiplication of Q and K with softmax and value scale
(Eq. 2).

Q,K, V = linear(patches) (1)
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attentionMatrix = softmax(
Q × KT

√
P

) (2)

Each row of the attention matrix indicates the weight of all embedding patches to
the corresponding patch. Softmax operation ensures the sum of each row equals
1. By performing matrix multiplication on the attention matrix and V , each row
of the final output is the weighted sum of all embeddings.

attention = attentionMatix × V (3)

The uniqueness of the attention matrix is that it is learned from scratch
without inductive bias. As a result, the nearby and faraway patches have an
equal chance of gaining weight. This unbiasedness of the attention matrix is ideal
for the vague concept of synchrony. For example, LSTM has an inductive bias
that assumes later (newer) input contributes more to the prediction. However,
for synchrony, the definitions are either behaviors aligned simultaneously or with
unspecified time delay. Neither case fits perfectly with LSTM’s bias.

3.3 Embedding Methods

Since our study focused on a dyadic interaction dataset, the input actually con-
sists of features from both the target participant (blue) and the interaction
partner (red) for every sample, shown at the top of Fig. 4. First, the separate
embedding, as illustrated in Fig. 4 mid left, is the basic setup that all patches
access to each other without imposed limitation. Second, to reduce training
difficulty, the same frame embedding embeds the dyadic sample of the same
frame into a single patch, shown at the mid right of Fig. 4. This embedding is
based on strict case synchrony that defines the behavior aligned at exact timing.
This method reduces the number of patches by half and simplifies the attention
matrix.

If the separate embedding model is adequately trained, the embeddings will
be fit towards the engagement task. In another sense, these embeddings are pro-
jections of the initial modality on a particular embedding domain. Furthermore,
this domain is trained to represent necessary information for the engagement
prediction task. We hypothesize that the cosine similarity of these projections
is akin to the modality similarity for measuring synchrony. Therefore, the third
method takes the embeddings from a trained separate embedding model and
performs a dynamic warping algorithm (DTW) over the target and the part-
ner sequence to obtain a matching table from the target to the partner. This
matching represents the most synchronized partner sample of each target sam-
ple within the input sequence. Finally, the matching pair embedding embeds the
matching pairs into patches. This method also reduced the number of patches
by half.
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Fig. 4. Embedding Details - The topmost section describes an alternate representation
of the dyadic modality input sequence. In this alternative representation, Tark stands
for the kth input sample of the target participant. Similarly, Park stands for the kth
input sample of the partner. In the mid-left section, Tark is embedded into Pk, where P
represents embedded patches. Likewise, Park is embedded into P ′

k, which means each
sample will be embedded into two separate patches. In the mid-right section, both the
target participant and partner of the same sample k will be concatenated first, then
embedded into one Pk, where the yellow color of P indicates a mix of both participants.
Finally, in the bottom section, the trained separate embedding model serves as a feature
extractor. The matching table contains matched pairs from the dynamic time-warping
algorithm (marked as DTW in the figure). Dyadic samples are concatenated based on
the matching table and embedded input patches. In this schema, Pk always contains
Tark, but not necessarily Park. (Color figure online)
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4 Experiments

4.1 Data

We experimented with our models on the NoXi dataset, a dyadic interaction cor-
pus of an expert sharing knowledge with a novice [5]. One great feature of the
NoXi dataset is the open-source database, which provides frame-level annota-
tions and the original sensor data. We mainly used the engagement labels under
the annotator gold standard, which annotated the data with continuous engage-
ment values between 0 and 1. Additionally, we downloaded all other samples with
available annotations of the same engagement scale to extend the sample size. In
total, we downloaded 27 sessions with the face, body skeleton, action unit, head
orientation sensor data, and continuous engagement annotation ranging from 0
to 1.

4.2 Models

All models consist of 4 parallel streams (face, skeleton, action unit, and head
orientation) and a regression head. The backbone model consists of one linear
embedding layer, an attention block, and one linear layer for resizing output. The
attention block is the standard attention block introduced in the transformer.
The late fusion prediction head is a two-layer multi-layer perceptron with hidden
layer ratio of 4.

The differences across different models reside in the embedding layer. This
part follows the three methods of separate embedding, same-frame embedding,
and matching frame embedding. As a baseline, we experimented with a two
stream LSTM model with each stream process all four modalities of the target
or the partner, similar to the model described in [10]. Additionally, we experi-
mented with three attention blocks instead of one for same frame embedding and
separate embedding to test if a deeper and larger model improves the result. For
the matching frame embedding, we conducted an extra experiment that directly
embeds the extracted embeddings instead of embedding original modality The
window constraint for time dynamic warping is set from the present to 3 s in
the past. Additionally, the algorithm cannot skip the target participant, details
shown in Algorithms 1 and 2. In Algorithm 1, X and Y are target patches and
partner patches respectively, and W is the window constraint which is 75 samples
(3 s). The output of Algorithm 1, the DTW cost table, is the input for Algorithm
2 to calculate the optimal path which consists of optimal matching pairs.

We used mean square error as loss function. The training adopted the leave-
one-out strategy. The first session from Paris serves as the testing data, and
the training utilized the remaining 26 sessions. We set the initial learning rate
as 1e−4, the default attention blocks as 1, dropout rate as 0.3. To reduce the
training time, the input is limited to 250 frames with a striding of 5 frames and
we embed 5 frames as a single patch. All experiments ran for 50 epochs on GPU
with a fixed random seed of 22718.
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Algorithm 1. CostTable(X,Y,W)
Ensure: |X| = |Y |

N ← |X| + 1
dtw[] ← new[N × N ]
for i ← 0; i < N ; i ++ do

for j ← 0; j < N ; j ++ do
dtw[i, j] ← ∞ � Initialize costs to infinity

end for
end for
dtw(0, 0) ← 0
for i ← 1; i < N ; i ++ do

for j ← max(1, i − W ); j < i + 1; j ++ do � loop with window constraint
cost ← distance(X[i], Y [j])
prev ← min(dtw[i − 1, j], dtw[i − 1, j − 1] � no skipping for target
dtw[i, j] ← prev + cost

end for
end for
return dtw

Algorithm 2. TracePath(dtw)
Ensure: rows(dtw) = columns(dtw)

path ← new[]
N ← rows(dtw)
min ← ∞
for j ← 0; j < N ; j ++ do

if dtw[N − 1, j] < min then
min ← dtw[N − 1, j]
J ← j � find the index of minimum total cost

end if
end for
i ← N − 1
j ← J
while i �= 1 do

prev ← min(dtw[i − 1, j], dtw[i − 1, j − 1]) � no skipping for target
if dtw[i − 1, j] = prev then

i ← i − 1
else if dtw[i − 1, j − 1] = prev then

i ← i − 1
j ← j − 1

end if
path add (i, j)

end while
return path
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5 Results and Discussion

5.1 Experiment Results

Table 1. Experiment results - Mean Square Error and pseudo accuracy

Experiment Models MSE Pseudo Accuracy (±0.1)

Two stream LSTM (baseline) 0.0480 0.2750
Separate Embedding 0.0278 0.3998
Same Frame Embedding 0.0310 0.3228
Matching Frame Embedding 0.0361 0.3035
Separate Embedding with 3 Attention Blocks 0.0392 0.2754
Same Frame Embedding with 3 Attention Blocks 0.0303 0.3092
Matching Frame Embedding with Embedding as input 0.0389 0.2757

Since the annotations are continuous, we cannot simply calculate the accuracy of
our results. Instead, we evaluate the performance by MSE and pseudo accuracy.
First, MSE indicates the overall deviation of the prediction from the ground
truth. Second, we set predictions within a ±0.1 tolerance range of the ground
truth as positive predictions to calculate pseudo accuracy.

Table 1 lists each experiment’s testing MSE and pseudo accuracy. The pseudo
accuracy aligned with MSE, which showed no unexpected exceptions. This result
indicated that the predictions from all models generally followed that lower MSE
had higher pseudo accuracy. In other words, no particular model had most of its
predictions accurate but had a small number of severely erroneous results that
contributed to the majority of the MSE.

Our results showed that the intra-modality structure did improve the engage-
ment level prediction accuracy. All models that adopted inter-person intra-
modality structure outperformed the two-stream LSTM baseline model in MSE.
However, except the separate embedding model, there is no significant improve-
ment in pseudo accuracy.

The embedding methods also created distinct differences in the results. The
separate embedding model, which had to learn the largest attention matrix,
turned out to be the best-performed model. The same frame embedding model
followed as the intermediate result. The worst result was the matching frame
embedding models. Additionally, given our experiment setup, the deeper mod-
els with three attention blocks did not outperform their simpler counterparts.
Finally, for matching-frame embedding, directly matching the extracted embed-
ding patches resulted in an even worse result than matching the original modality
features.

5.2 Discussions

In this section, we first discuss the reasons behind the experiment results. Then
we highlight the limitations of this work.
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Result Discussion

Modality Independent and Person Independent. The two-stream baseline pro-
cesses each participant as an independent entity. In each stream, time series
features of all modalities are processed in the sequential layers and contribute
to the output. This structure properly utilizes the multi-modal features for each
participant. However, the output of each stream contains mixed information
about all input modalities. Once the information is intertwined, it would be
improbable to learn the synchrony phenomenon as synchrony is observed within
the same modality. A similar issue also applies to our multi-stream inter-person
intra-modal model. Our models allow each modality stream to learn from two
participants, which can also be considered treating each modality independently.
The output of each stream contains mixed information from both participants,
which can hinder the learning of cross-modality information of each person.
In other words, the two-stream model prioritizes the cross-modal learning of
each participant, while our model prioritizes the interpersonal synchrony of each
modality. Our results showed that the inter-person intra-modality models all had
better results than the two-stream baseline. That is interpersonal information
outweighs cross-modal features in the dyadic scenarios. But different results may
apply in different scenarios. Extensive experiments with different settings would
be desired to validate our findings. Furthermore, these designs are not necessar-
ily mutually exclusive. Developing models covering both structures as submodels
with a weighted fusion can be promising.

Issues for Hand-Crafted Pair Embedding. Among our models, the two hand-
crafted pair embedding models failed to outperform the baseline model by a
considerable margin, especially for the pseudo accuracy. This is because no
matter which hand-crafted method, we limited the possible cases of synchrony.
Notably, we observed that the matching frame embedding model was harshly
underperforming. There are two major reasons for this. First, the matching
frame embedding depends on the matching algorithm which requires a reliable
similarity function. In our hypothesis, a trained separate embedding model can
serve as a feature extractor so that the cosine similarity of the extracted feature
serves as the similarity function. However, our feature extractor was severely
undertrained compared with commonly used feature extractors. As a result, the
features could not be adequately projected into the new domain, and the cosine
similarity of the extracted features could not appropriately reflect the modality
similarity. Second, there is a missing sample problem created by the constraints
for dynamic time warping. The constraints are that the target participant sam-
ples cannot be skipped or matched to future partner samples. As a result, the
partner samples close to the present are discarded in nearly all cases. The only
possible matching that uses the present partner sample is the same frame match-
ing. Otherwise, the present partner sample will be the future sample for the rest
of the target samples, which is prohibited by constraints. That is, the match-
ing frame model can never obtain the newest features of the partner. Therefore,
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we need a better solution for the modality feature extraction and an improved
matching algorithm.

Fig. 5. A sample of attention weights for the extra patch from all 8 heads in the separate
embedding model - Each figure represents an attention head. The x-axis indicates the
index of the patches, where 0 is the extra patch, 1 to 50 are the target participant from
past to present, and 51 to 100 are the partner from past to present. The y-axis shows
the weights of which the sum equals 1.

Other Limitations

Explainability. We were unable to model synchrony directly. In the early stage
of this work, we attempted to model the synchrony itself. For example, we used
high-level features such as smiles and head nods and tried to define a successful
case of synchrony. However, we found these high-level behaviors very individual-
based. For example, some participants smile habitually, and some rarely smile.
Eventually, we adopted a data-driven approach using base-level sensor data,
which is less interpretable. Figure 5 shows a sample of attention weights for the
extra patch, illustrated in Fig. 3, which is the only patch used for prediction.
Therefore, in the case of one block of attention, we only need to examine the
attention matrix’s first row, i.e., the row for the extra patch. The figure indi-
cates most heads are trained to get information from the target participant
only, but some heads, three heads on the right side, partially get weights from
the partner. As all heads in multi-head attention contribute to the output with
learned weights, temporal information from both participants affected the pre-
diction. This matches the our hypothesis that interpersonal information benefits
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the prediction, but getting any further explanation is challenging. We cannot be
certain that these weights are a manifestation of synchrony.

Data and Annotation. We used continuous annotation because it was the most
viable type of annotation across all sessions. However, for engagement level pre-
diction, such precision is unnecessary. Moreover, training a regression task is
significantly more problematic than a classification task. Another aspect of anno-
tation limitation is the difficulty of obtaining frame-level annotations. In NoXi
dataset, each session contains tens of thousands of frames. Annotating on such
a scale is a daunting task for either crowd annotating or expert annotating.

Limited Optimization. Many machine learning techniques, such as hyperparam-
eter grid search, can help improve the results. However, since our experiments
are on the frame level, the training takes much longer than the conversation
level tasks. As a result, our experiment could not optimize each model; instead
adopted similar hyperparameters for all experiments. There is a possibility that
some results can be significantly improved if supported by proper optimization
techniques.

Individual Modality Effects. A common aspect of multi-modality research is to
experiment with the contribution of each modality and different combinations
of modalities. During our experiments, we encountered distinct attention dis-
tributions between parallel models. However, we considered this aspect beyond
the scope of this paper. Which modality is better suited for the inter-person
intra-modality structure remains an undiscussed topic.

6 Conclusion

This work explored the gap between engagement modeling and interpersonal
synchrony. To enable models to capture the behavior synchrony between dyadic
partners, we developed an inter-person intra-modality attention based model
with different embedding schemas. Our experiments verified the positive impact
of inter-person intra-modality features in engagement level prediction. We
showed that time series feature processing grouped by each modality produced
better results in the dyadic interaction scenario than those grouped by each
participant. In future work, we plan to extend the model to cover both intra-
modal inter-person and grouped-by-person submodels, explore different methods
to assist training, and expand the training data to support more complex models.
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