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Abstract— Biometric systems are prone to spoofing attacks. 

While research in speech anti-spoofing has been progressing, 

there is a limited availability of diverse language datasets. This 

study aims to bridge this gap by developing an Indonesian 

spoofed speech dataset, which includes replay attacks, text-to-

speech, and voice conversion. This dataset forms the foundation 

for creating an Indonesian speech anti-spoofing system. 

Subsequently, light convolutional neural network (LCNN) and 

residual network (ResNet) models, based on convolutional 

neural networks (CNN), were developed to evaluate the dataset. 

The input features used are linear frequency cepstral 

coefficients (LFCC). Both models demonstrate remarkably low 

minDCF and EER scores approaching zero. The results also 

exhibit exceptional scores with 4-fold cross validation, showing 

strong initial performance with no signs of overfitting. However, 

models trained solely on Common Voice or Prosa.ai datasets 

performed poorly in cross-source tests, suggesting 

generalization issues due to a lack of diversity in the dataset. 

This highlights the need for further improvement and continued 

research in Indonesian speech spoof detection. 

Keywords—Spoof speech detection, Indonesian, ResNet, 

LCNN, LFCC 

I. INTRODUCTION 

Technological advancements in neural networks have 
promoted biometric systems, such as Automatic Speaker 
Verification (ASV) systems [1]. These systems are vulnerable 
to spoofing attacks [2], where attackers use spoofed data to 
impersonate verified speakers, potentially leading to identity 
theft or data breaches [3]. Attacks can be categorized as 
physical access (PA) scenarios, including replay attacks, and 
logical access (LA) scenarios, including speech synthesis and 
voice conversion.  

Although studies to develop countermeasures have been 
conducted throughout the years, as seen in previous 
ASVspoof challenges [4], [5], [6], [7], most are limited to 
certain languages due to dataset constraints. There remains a 
need for inclusivity for underrepresented languages in the 
field of research for spoof speech detection, such as Bahasa 
Indonesia. This paper aims to fill the research gap by 
developing a convolutional neural network-based system to 
detect spoofed speech in the Indonesian language. 

Several studies on spoof speech detection for specific 
language domains have been conducted in neighboring 
languages. In Thailand, Galajit et al. constructed ThaiSpoof, a 
database for spoof detection in the Thai Language [8]. The 
spoofed data in the database were generated using text-to-
speech (TTS) tools, fundamental frequency modifications, 
and pitch shifting. The utilization of the dataset was later 
shown using a convolutional neural network (CNN) model 
with linear frequency cepstral coefficient (LFCC) features. 
Similar research involves the creation of FMFCC-A by Zhang 

et al., where spoofed data are generated using 11 Mandarin 
TTS system and 2 voice conversion (VC) systems [9]. 

Our research focuses on the Indonesian language in hopes 
of developing a robust spoofed speech detection system. This 
study involves the development of a specialized dataset for 
Indonesian spoof detection, addressing the lack of resources 
in this area. Additionally, it explores the application of CNN-
based models, particularly LCNN and ResNet, in the context 
of Indonesian spoof speech detection. This research seeks to 
determine the effectiveness of these models when applied to 
the newly developed dataset and to assess their ability to 
generalize across different data sources. These efforts 
contribute to advancing the understanding and technology of 
spoofed speech detection in Bahasa Indonesia, setting the 
stage for future research and applications in this field.  

II. SPEECH SPOOF DETECTION 

Automatic Speaker Verification (ASV) systems have 
played a significant role in identifying spoofed speech through 
implementing machine learning techniques to increase 
accuracy, ensuring the security of systems [10]. ASV systems 
can be integrated with countermeasure systems, which are 
mechanisms or techniques designed to protect ASV systems 
from spoof attacks such as spoof speech detection systems [6].  

Spoofed speeches are used in spoofing attacks for fraud, 
threats, or spreading false information. Several techniques to 
generate spoofed speech includes speech synthesis, voice 
conversion, impersonation, and replay attack [11]. Spoofing 
attacks in ASV can be categorized into physical access (PA) 
scenarios such as replay attacks and logical access (LA) 
scenarios such as spoof attacks that are based upon machine-
generated samples such as speech synthesis and voice 
conversion [12]. Effective countermeasure solutions are 
required to detect both types of attacks. 

According to a study done by Mittal & Dua, early 
development of countermeasures involved classical machine 
learning approaches, but with the rise of deep learning, the 
focus has shifted to neural network-based approaches [10]. 
Convolutional neural network (CNN) models are favored for 
their minimal preprocessing requirements due to kernel usage 
[10] and their ability to automatically extract features from 
sound, capturing complex spatial and temporal variations in 
speech signals [9]. Two popular CNN-based architectures are 
residual networks (ResNet) [13] and light convolutional 
neural networks (LCNN) [14] [9]. Features, which are 
characteristics or attributes of speech signals, also play a 
fundamental role in affecting the accuracy and robustness of a 
spoof speech detection algorithm [15] with linear frequency 
cepstral coefficient (LFCC) being one of the most common 
features used in spoof speech detection with it being used as 
features for the baseline countermeasure systems for 
ASVspoof 2019 [6] and 2021 [7] challenges. 
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Fig. 1. General flow for the dataset development 

TABLE I 
BONA FIDE AND SPOOF AUDIO IN LA DATASET 

Source Type Accent Number of Utterances 

Common 
Voice 

Bona fide multi 4,540 

Spoof (VC) multi 90,800 

Spoof (TTS) bbc 4,540 

Spoof (TTS) ind 4,540 

Spoof (TTS) jav 4,540 

Prosa.ai 

Bona fide multi 2,000 

Spoof (VC) multi 120,000 

Spoof (TTS) bbc 2,000 

Spoof (TTS) ind 2,000 

Spoof (TTS) jav 2,000 

Total 236,960 

III. BUILDING THE DATASET 

This section outlines the development of the dataset which 
is briefly visualized in Figure 1. The initial Bahasa Indonesia 
audio used to build the dataset is sourced from two existing 
datasets: an open-source dataset from Common Voice [16] 
and a proprietary dataset developed by Prosa.ai [17]. As the 
Common Voice dataset is made up of audio data from 
volunteers, the acoustic conditions vary from one audio file to 
another with the appearance of noise being unavoidable for 
some of the audio. In contrast, the Prosa.ai dataset consists of 

 

 

audio samples from 53 unique speakers with a balanced 
gender distribution of approximately 50% male and 50% 
female, which are studio recorded to ensure clear and 
consistent audio quality throughout each audio. The duration 
of individual audio samples from both Common Voice and 
Prosa.ai ranges from 3 to 60 seconds.  

Through combining the data from Common Voice and 
Prosa.ai, we develop a dataset for the purpose of spoofed 
speech detection in Bahasa Indonesia. This dataset consists of 
bona fide and spoofed speech for both LA and PA scenarios. 
Tools and methods used to generate the spoofed speeches in 
the dataset include replay attack simulations, text-to-speech 
(TTS) for speech synthesis, and voice conversion (VC). 

A. LA scenario 

For the LA scenario, spoofed speech data are generated 
using the Massively Multilingual Speech (MMS) [18] model 
for TTS-based spoofs and the FreeVC [19] system for VC-
based spoofs. The original data used to create the spoofed ones 
include multiple accents or variations within the Indonesian 
language (multi). The MMS model was used to create speech 
data for three major Indonesian accents: Indonesian (ind), 
Javanese (jav), and Bataknese (bbc). However, a limitation of 
the MMS model is its ability to generate speech for only one 
male speaker. On the other hand, the FreeVC system can 
change a speaker's voice without needing any text input, 
extracting key features from the original voice to create 
realistic sounding spoofed speech. Table I shows the 
generated Indonesian language spoof data along with the bona 
fide data. 
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Fig. 2.  Microphone and speaker placements for replay attack simulation 

TABLE II 
BONA FIDE AND SPOOF AUDIO IN PA DATASET 

Source Type Number of Utterances 

Common 
Voice 

Bona fide 4,540 

Spoof (Handphone Mic) 4,540 

Spoof (Condenser Mic) 4,540 

Prosa.ai 

Bona fide 2,000 

Spoof (Handphone Mic) 2,000 

Spoof (Condenser Mic) 2,000 

Total 19,620 

B. PA scenario 

For PA scenario, spoofed speech data are made by 
simulating replay attacks. The process involves playing 
original audio through a speaker and recording it 
simultaneously on three microphones: a condenser 
microphone for the ASV system, a condenser microphone for 
the attacker, and a built-in handphone microphone for the 
attacker. These microphones are connected to a digital audio 
workstation (DAW) for recording and are placed 30 
centimeters (about 11.81 in) away from the speaker with 
placements seen in Figure 2.  

The ASV system’s recordings are used as bona fide data, 
while the attacker’s recordings are replayed through a speaker 
and re-recorded by the ASV system’s microphone, creating 
spoof audio samples for the PA scenario dataset. Table II 
shows the Indonesian language spoof dataset consisting of 
bona fide and spoof data for PA scenario. 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Spoof detection models 

The choice of using convolutional neural network (CNN) 
based models is due to their ability to identify local patterns in 
data with minimal preprocessing, making them a widely used 
deep learning approach for spoof speech detection [10]. 
Models used to carry out the development of Indonesian spoof 
speech detection are residual networks (ResNet) and also light  

 

 

 

convolutional neural networks (LCNN). Linear frequency 
cepstral coefficients (LFCC) are chosen as the input feature, 
as it is one of the most common features used due to its 
performance in differentiating between bona fide and spoof 
speech [20].  

The LCNN model is the baseline model established by 
ASVspoof 2021 [7], which also takes in LFCC as its input. 
We developed a ResNet model for spoof detection system, 
leveraging the framework proposed in [13]. For both models, 
the epoch is set to 50, batch size 16, and learning rate 0.001. 
Early stopping with patience of 5 is implemented for both 
ResNet and LCNN model. Scores used will be based off the 
metrics used and defined in ASVspoof 2024 which are 
minDCF and EER [21]. Experiments will be done separately 
for both PA and LA scenarios. 

B. Dataset partitioning 

In this stage, the datasets, comprising processed audio for 
both PA and LA scenarios, are divided into three subsets: 
training, development, and testing. Since the Common Voice 
dataset is already pre-split, this section focuses on the 
partitioning of the Prosa.ai data. Of the 50 speakers in the 
Prosa.ai dataset, 30 speakers are allocated to the training 
subset, 12 to the development subset, and 8 to the testing 
subset, ensuring no speaker overlaps between subsets. This 
allocation was chosen to achieve a balanced distribution for 
training, development, and testing subsets, specifically 
approximately 60% for training, 20% for development, and 
20% for testing across both PA and LA scenario datasets. This 
distribution is particularly beneficial for ensuring robust 
model evaluation and reducing bias, which is crucial for 
spoofed speech detection systems where model accuracy is 
critical.  

With the initial 50 speakers in the Prosa.ai dataset evenly 
divided by gender, gender balance is maintained across all 
subsets, with equal representation of male and female 
speakers. The training subset includes 15 male and 15 female 
speakers, the development subset includes 6 male and 6 
female speakers, and the testing subset includes 4 male and 4 
female speakers. Additionally, the balance among types of 
spoofed audio is ensured within each subset to prevent any 
category from dominating, thus reducing bias in model 
training and evaluation. 
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Fig. 3. 2D Projection of features using t-SNE 

TABLE III 
DISTRIBUTION FOR TRAIN, DEV, TEST SUBSET IN PA DATASET 

Source Type 
Number of Utterances 

Train Dev Test 

Common 
Voice 

Bona fide 3,055 780 705 

Spoof (Handphone) 3,055 780 705 

Spoof (Condenser) 3,055 780 705 

Prosa.ai 

Bona fide 1,200 400 400 

Spoof (Handphone) 1,200 400 400 

Spoof (Condenser) 1,200 400 400 

Total 
12,765 3,540 3,315 

19,620 

 

Table III shows the respective train, development, and test 
subset distributions for the PA scenario dataset, resulting in 
65% for training, 18% for development, and 17% for testing. 
For the LA scenario, Table IV shows the final distributions for 
each subset, resulting in 60% for training, 20% for 
development, and 20% for testing. 

C. Experimental setup and metrics 

Both LFCC features from PA and LA datasets are 
visualized and projected in 2D using t-SNE to get a better 
understanding of the input of the models beforehand as seen 
in Figure 3. In Figure 3, yellow indicates data belonging to the 
bona fide class, while purple indicates data labeled as spoof. 
The substantial class overlap, and intricate patterns shown by 
the data points for PA scenario reveals a more complex and 
heterogeneous distribution compared to LA scenario’s 
homogenous data points.  

To fully grasp the performance of the model relative to the 
dataset, models are trained and validated using the 4-fold cross 
validation scheme. After that, models are rebuilt using the 
entire training and development subset and is later tested using 
three slightly different test sets: the entirety of the test subset, 
parts of the test subset that is made up of only Common Voice 
audio and parts of the test subset that is made up of only 
Prosa.ai audio. The scores received will be used for 
comparison alongside the average score from previously 
described 4-fold cross validation phase.   

 

 

TABLE IV 
DISTRIBUTION FOR TRAIN, DEV, TEST SUBSET IN LA DATASET 

Source Type Accent 
Number of Utterances 

Train Dev Test 

Common 
Voice 

Bona 

fide 
multi 3,055 780 705 

Spoof 

(VC) 
multi 54,480 18,160 18,160 

Spoof 

(TTS) 
bbc 3,055 780 705 

Spoof 

(TTS) 
ind 3,055 780 705 

Spoof 

(TTS) 
jav 3,055 780 705 

Prosa.ai 

Bona 

fide 
multi 1,200 320 480 

Spoof 

(VC) 
multi 72,000 24,000 24,000 

Spoof 

(TTS) 
bbc 1,200 320 480 

Spoof 

(TTS) 
ind 1,200 320 480 

Spoof 

(TTS) 
jav 1,200 320 480 

Total 
143,500 46,560 46,900 

236,960 

 

 To assess model generalization and dataset behavior from 
Common Voice and Prosa.ai, each model was trained and 
validated using training and development subsets exclusively 
from each source. Each trained model was then tested on test 
subsets of same-source (e.g., model trained using Common 
Voice only data is tested using parts of test subset that is only 
from Common Voice) and cross-source (e.g., model trained 
using Common Voice only data is tested using parts of test 
subset that is only from Prosa.ai).  

 Metrics used to evaluate the performance of the models are 
minimum detection cost function (minDCF) and equal error 
rate (EER). Both metrics are previously defined in ASVspoof 
Evaluation Plan 5 and used in ASVspoof 2024 [21] for speech 
deepfake detection in a stand-alone setting without speaker 
verification. 

 

 
 

(a) PA scenario 

 
 

(b) LA scenario 
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TABLE V 
SCORES FOR AVERAGE FOLD AND TEST (PA) 

Phase 
minDCF EER (%) 

LCNN ResNet LCNN ResNet 

1st Fold 0.00682 0.02005 0.25119 0.73471 

2nd Fold 0.02004 0.00000 0.90160 0.00000 

3rd Fold 0.00000 0.00000 0.00000 0.00000 

4th Fold 0.00000 0.00000 0.00000 0.00000 

Average 0.00671 0.00501 0.28820 0.18368 

Tested on Prosa.ai  

Only 
0.00236 0.00943 0.25681 0.51363 

Tested on Common 

Voice Only 
0.00894 0.00000 0.31915 0.00000 

Tested on Entirety of 
Test Subset 

0.00684 0.00218 0.27716 0.10147 

TABLE VI 
SCORES FOR SAME/CROSS-SOURCE TEST (PA) 

Trained 

On 

Tested 

On 

minDCF EER (%) 

LCNN ResNet LCNN ResNet 

Common 
Voice 

Same-

source 
0.00695 0.00000 0.28369 0.00000 

Cross-

source 
1.00000 1.00000 80.8648 99.7432 

Prosa.ai 

Same-

source 
0.00000 0.00000 0.00000 0.00000 

Cross-

source 
1.00000 1.00000 99.2908 100.000 

D. Results and analysis 

This subsection highlights the results of the experiment 
and analyzes the outcome. For PA, Table V summarizes the 
performance of both LCNN and ResNet on 4-fold cross 
validation and specific tests. Both models show excellent 
performance in the PA scenario, with minDCF and EER 
values reaching zero when evaluated using 4-fold cross 
validation. However, when tested on cross-source data (Table 
VI), both models perform poorly, with minDCF scores of 1 
and EERs ranging from 81-100%, demonstrating poor 
generalization. The poor generalization in the PA scenario 
could be attributed to several factors: 

• Differences in recording quality between studio-
recorded Prosa.ai data and volunteer-recorded 
Common Voice data. 

• Variations in recording settings, such as gain and 
stereo-to-mono conversion, which might remove 
critical features for spoof detection. These features 
could include subtle acoustic cues like room 
reverberation or microphone characteristics that are 
present in genuine recordings but may be altered or 
absent in spoofed ones. 

• Limited data in the PA scenario dataset compared to 
the LA scenario, potentially restricting the models' 
exposure to diverse conditions. 

 For the LA scenario, Table VII displays both model's 
performance, including results from 4-fold cross-validation 
and specific tests. The results demonstrate excellent 
performance with minDCF and EER scores consistently 
approaching zero. However, in cross-source testing (as seen in 

TABLE VII 
SCORES FOR AVERAGE FOLD AND TEST (LA) 

Phase 
minDCF EER (%) 

LCNN ResNet LCNN ResNet 

1st Fold 0.00011 0.00000 0.00539 0.00000 

2nd Fold 0.00002 0.00002 0.00109 0.00109 

3rd Fold 0.00002 0.00002 0.00108 0.00108 

4th Fold 0.00039 0.00009 0.05501 0.00434 

Average 0.00014 0.00003 0.01564 0.00163 

Tested on Prosa.ai  

Only 
0.00047 0.00000 0.02359 0.00000 

Tested on Common 

Voice Only 
0.00158 0.00030 0.14491 0.01480 

Tested on Entirety of 
Test Subset 

0.00147 0.00000 0.15220 0.00000 

TABLE VIII 
SCORES FOR SAME/CROSS SOURCE TEST (LA) 

Trained 

On 

Tested 

On 

minDCF EER (%) 

LCNN ResNet LCNN ResNet 

Common 
Voice 

Same-

source 
0.00000 0.00000 0.00000 0.00000 

Cross-

source 
0.59712 1.00000 30.0000 100.000 

Prosa.ai 

Same-

source 
0.00008 0.00396 0.00393 0.20833 

Cross-

source 
0.00035 0.00623 0.01726 0.28488 

 

Table VIII), models trained on the Common Voice dataset 
showed inferior performance, while models trained on the 
Prosa.ai dataset maintained good performance even when 
tested on Common Voice data. The hypothesis drawn from 
these results include: 

• The characteristics of the data. LA scenario might 
benefit from the consistent quality of studio-recorded 
data (Prosa.ai), making it easier for models to learn 
distinguishing features between genuine and spoofed 
speech. 

• In LA scenario, models likely use speaker-dependent 
characteristics from speech for discrimination. These 
features, such as fundamental frequency patterns or 
spectral envelope characteristics, are more consistent 
across different recording conditions. In contrast, PA 
scenario models rely more on detecting speech 
distortions introduced during replay attacks, which can 
vary significantly based on recording equipment and 
environment. 

• The spoof audio in LA dataset might produce more 
consistent artifacts, while the ones in PA spoof might 
introduce more variable distortions depending on the 
playback and re-recording conditions. 

The extremely low EER (0%) in same-source testing 
contrasted with very high EER (near 100%) in cross-source 
testing for some models raises concerns about the credibility 
of these results. This stark difference suggests potential 
overfitting to source-specific characteristics rather than 
learning generalizable features for spoof detection. Future 
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work should investigate this phenomenon and consider 
techniques to improve cross-source generalization. 

V. CONCLUSION 

This study focused on creating an Indonesian spoofed 
speech dataset to support the development of Indonesian 
speech anti-spoofing systems. The dataset was compiled from 
two sources, Common Voice and Prosa.ai, incorporating 
various accents and recording conditions for both logical 
access (LA) and physical access (PA) scenarios. The LA 
scenario dataset consists of text-to-speech-based spoofs 
generated using the Massively Multilingual Speech (MMS) 
model and voice-conversion-based spoofs generated using the 
FreeVC system. For PA scenario dataset, replay attacks were 
simulated using different microphone setups to generate the 
spoofed speeches. 

Evaluations of light convolutional neural network 
(LCNN) and residual network (ResNet) models on this dataset 
showed remarkable performance, including 4-fold cross 
validation tests, indicating robust initial outcomes without 
overfitting concerns. However, the models exhibited 
significant generalization issues when trained on individual 
datasets and tested across sources, underscoring the need for 
diverse and high-quality datasets. Despite these challenges, 
the consistent quality of the Prosa.ai dataset facilitated better 
generalization, highlighting the importance of high-quality 
data in training. 

Future work should focus on developing techniques to 
improve cross-source generalization and enhancing dataset 
diversity and quality to improve model generalization. To 
enhance the diversity of the PA dataset, future work could 
consider using methods that simulate room acoustics to 
generate additional pseudo data. This approach could 
potentially increase the robustness of models trained on this 
dataset. Additionally, exploring further countermeasures and 
hybrid approaches could improve the robustness of 
Indonesian speech anti-spoofing systems. This study 
contributes to the development of a foundational dataset and 
provides a basis for future research in Indonesian speech anti-
spoofing. 
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