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Abstract—Nonintrusive speech intelligibility (SI) prediction is
essential for evaluating many speech technology applications,
including hearing aid development. In this study, several factors
related to hearing perception are investigated to predict SI. In the
proposed method, we integrated a physiological auditory model
from two ears (binaural EarModel), wavegram-CNN model
and acoustic parameter model. The refined EarModel does not
require clean speech as input (blind method). In EarModel, the
perception caused by hearing loss is simulated based on audio-
grams. Meanwhile, the wavegram-CNN and acoustic parameter
models represent the factors related to the speech spectrum
and acoustics, respectively. The proposed method is evaluated
based on the scenario from the 1st Clarity Prediction Challenge
(CPC1). The results show that the proposed method outperforms
the intrusive baseline MBSTOI and HASPI methods in terms of
the Pearson coefficient (ρ), RMSE, and R2 score in both closed-
set and open-set tracks. Based on the results from listener-wise
evaluation results, the average ρ could be improved by more than
0.3 using the proposed method.

Index Terms—hearing aids, clarity challenge, speech intelligi-
bility, nonintrusive method, auditory model

I. INTRODUCTION

Speech intelligibility (SI) refers to how well someone
understands speech or the percentage of words identified
correctly [1], [2]. SI prediction is crucial in effective real-
world communication to identify perceivable speech that is
inseparable from background noise and reverberation. Speech
may be less intelligible when it reaches human ears [3]. This
phenomenon is worse for individuals with hearing loss [4],
[5]. Consequently, hearing aids are beneficial to enhance SI
for hearing-impaired listeners.

In the past few decades, several speech enhancement tech-
niques have been proposed for hearing aids. However, until the
development of objective SI prediction methods around 1950s,
SI evaluation was limited and relied on subjective listening
experiments [6]–[8]. For instance, the Hearing-Aid Speech
Perception Index (HASPI) has been considered for evaluating
SI for hearing aids [9]. A remarkable aspect of this model is
that it includes an auditory model to simulate hearing loss in
hearing-impaired listeners [10]. The main limitation of HASPI
is primarily due to monaural signal processing and target
speech that cannot be emphasized in a noisy environment.

On the other hand, a baseline model using modified binaural
short-time objective intelligibility (MBSTOI) [11] and the
Cambridge hearing loss model (MBSG model) [12] were
proposed in the Clarity Challenge1 [2] as an alternative to
HASPI [13]. Since the Clarity Challenge focused on binaural
processing, the aim of the baseline model for the prediction
challenge is to find an algorithm that accurately predicts the
speech intelligibility of binaural signals. Despite this advan-
tage, the baseline model cannot be used to fix the delay after
hearing aid processing, and using a correlation function in the
measurement leads to signal-level insensitivity.

We propose a nonintrusive method to improve the training
efficiency and the process for SI prediction and facilitate
binaural processing based on the remaining issues with high
consideration of auditory perception. Unlike our prior work
[14] that utilizes directly the auditory model from HASPI
[9], the proposed method enhances auditory model to sim-
ulate hearing loss perception without clean speech as input.
Additionally, features related to the speech spectrum (wavLM
[15] with the wavegram-CNN model) and acoustic parameters
(eGeMAPS [16]) are also utilized. We hypothesize that our
proposed method can provide higher SI prediction accuracy
than the baseline MBSTOI because (1) we include several
speech parameters, (2) we solve the delay that occurs after
hearing aid processing, and (3) our auditory model is derived
from HASPI, which has been used as a standard in hearing
aid development.

II. RELATED WORK

Speech intelligibility (SI) prediction with the consideration
of hearing impaired condition is one of the modules in
the Clarity Challenge. The Clarity Challenge1 was initiated
to allow the research community to contribute to solving
problems in hearing aid processing by providing a general
scenario, dataset, baseline system, and fundamental knowledge
through open-source software, tutorials, etc. [13]. The task in
Clarity Prediction Challenge 1 (CPC1) is to predict the SI in
speech-in-noise (SPIN) perceived by listeners with a hearing
aid system [2]. SI is defined as the percentage of words that
are accurately identified in a given sentence (7-to-10-words
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Fig. 1. Block diagram of the proposed method

long) [2]. For reference, a baseline system based on MBSTOI
[11] was integrated with the MBSG model [12].

As a comparison, another SI index, HASPI, was proposed
by Kates and Arehart [9]. This model is usually preferable
in hearing aid development because it includes an auditory
model [10] that can simulate both normal hearing and hearing
loss perception. Hearing loss perception is simulated based on
outer hair cell (OHC) [17], [18] and inner hair cell (IHC)
loss [19]. In the auditory model, the temporal envelope is
extracted in several channels, passed through the modulation
analysis, and mapped using a neural network to calculate or
predict the intelligibility index. The HASPI was trained on
IEEE sentences and scored based on the proportion of entire
sentences correct [9].

In prior work [14], we addressed the delay problem in a
baseline system based on MBSTOI and supported binaural
processing using the auditory model in HASPI (EarModel) [9].
In our prior work, it appears that the evaluation results have a
higher correlation and smaller error compared to the baseline
system and the model in HASPI. However, since the input of
the original EarModel includes clean speech, this method is
regarded as a nonblind (intrusive) method.

The requirement of clean speech as input is often unrealistic
in a real-world environment. Moreover, in the machine learn-
ing model for the WavLM input in our prior work, less con-
sideration was given to hearing perception. The main objective
of this study is to propose a nonintrusive SI prediction method
by considering several relevant factors in hearing perception,
including the listener’s hearing condition, the spectrum of
speech, and the acoustic parameters.

1https://claritychallenge.org/

III. PROPOSED METHOD

Figure 1 shows the overall block diagram of our proposed
method, which consists of three models: the auditory model,
wavegram-CNN model, and acoustic parameter model. The
outputs of all models are combined with a stack regressor to
obtain the speech intelligibility (SI) score.

A. Auditory Model

An auditory model proposed in HASPI [9] is utilized in the
proposed method to represent normal and impaired hearing
perception. However, a modification is applied to the auditory
model by excluding signal processing from the input clean
signal. Thus, the SI prediction method with the modified
auditory model, denoted as EarModel, can be regarded as a
nonintrusive method.

The top part of Fig. 1 shows the process of the auditory
model. There are two EarModels, which process the left and
right improved SPIN signals. The first processing step in
the EarModel involves resampling to 24 kHz and bandpass
filtering, which resembles the middle ear filter. The filter limits
the bandwidth of the improved SPIN signal to 350-5000 Hz.
Next, the signal is passed through an auditory filter that was
developed based on the relation between the degree of OHC
loss and signal intensity at each audiometric frequency. The
OHC loss is modeled in the gammatone filterbank with an
increasing filter bandwidth within the 32 frequency channels.
Based on the work reported by [19], the filter bandwidth
change because of OHC loss BWHI with respect to normal
hearing BWNH below 50 dB SPL can be approximated by
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Eq. 1.

BWHI =

(
1 +

(
attnOHC

50

)
+ 2×

(
attnOHC

50

)6
)
BWNH

(1)
where attnOHC is the OHC damage in dB that causes hearing
loss, and the value 50 indicates the maximum attenuation in dB
SPL. For signal intensities between 50 and 100 dB SPL, the
control filterbank is used to determine the bandwidth changes
based on linear interpolation.

In addition, the dynamic range compression is modeled
based on the OHC function. Compression ratios of 1.25:1 to
3.5:1 in the frequency range of 80-8000 Hz are reduced due
to OHC damage. The compression gain in the auditory model
is expressed as follows.

G = −attnOHC −
(
1− 1

CR

)(
θlow − Êc

)
(2)

where
Êc = max

(
θlow,

(
min

(
Êc, θhigh

)))
. (3)

where Êc, θlow, θhigh, and CR are the control signal envelope
in dB, a lower threshold equal to (attnOHC + 30), the
highest threshold equal to 100 dB, and the compression ratio,
respectively [10], [20].

Due to the IHC damage, the additional attenuation con-
tributes to auditory filterbank changes [19]. Moreover, after
the signal decomposition in the filterbank, the IHC loss is
determined by using the short-term IHC firing adaptation
function based on the equivalent RC circuit model [21], [22].
Then, the differential equations are transformed using 1st-
order backward differences in the digital domain. After the
loss parameters are applied to the input signal, our proposed
method utilized the short-term temporal envelopes (20 ms
window with a stride of 10 ms) of the left and right signals
from the 32 channels. These temporal envelopes were fed into
a Conv2D block (three two-dimensional (2D) CNN layers with
a fully connected layer) to predict SI.

The Conv2D block was chosen over a simple CNN encoder
in previous work [14] because the Conv2D block allows for
capturing spatial information. The temporal envelope extracted
from EarModel contains temporal dynamics but lacks spatial
information. Thus, Conv2D, which operates on a 2D grid, is
used to leverage the convolutional layers and pick up spatial
patterns or structures within the data. Also, it can perform
hierarchical learning, which can capture low-level and high-
level features from the envelope extracted, enabling the model
to understand fine-grained details that contribute to speech
intelligibility. Lastly, due to the computational complexity of
the proposed method, the convolutional layer in the Conv2D
with a fully-connected layer reduces the number of parameters,
making the model more computationally efficient.

B. Wavegram-CNN Model

In prior research from CPC1 participants, it was shown
that features derived from automatic speech recognition (ASR)

significantly improved the prediction accuracy of SI [23]–[25].
In this study, we utilized a better downstream ASR model,
namely, the pretrained self-supervised learning (SSL) model,
specifically the wavLM model [15]. Instead of using the one-
dimensional (1D) CNN structure from our prior work [14],
we developed a wavegram-CNN model to learn the wavLM
feature.

The wavegram architecture learns the time-frequency rep-
resentation using a 2D CNN block with input obtained from
Sinc filters [26] or Gabor filters [27]. Although wavegrams
can learn new kinds of features over handcrafted spectrograms,
important 1D temporal features can be extracted from time-
domain 1D CNN blocks [28]. We utilized the SincConv and
GaborConv1d functions implemented in SpeechBrain4 [29] for
processing the wavLM features with a sampling frequency
of 16 kHz. By combining the advantages of the wavegram
architecture with the extraction of temporal features through
SincConv and GaborConv1d functions, our approach aimed
to enhance the model to capture both the time-frequency rep-
resentation and relevant temporal characteristics in predicting
speech intelligibility.

C. Acoustic Parameter Model

We constructed an acoustic parameter model using
eGeMAPS [16] as the input feature. The eGeMAPS is often
used as a minimalist feature set in various speech processing
tasks. While the eGeMAPS feature set may not be the primary
choice for speech intelligibility prediction, in the context of
hearing loss perception and hearing aid development, we
include eGeMAPS as an additional feature set along with the
auditory and wavegram-CNN model. In this case, the acoustic
parameter model became a part of a comprehensive analysis
modeling approach to understand the broader aspects of speech
processing and perception in individuals with hearing loss.

The openSMILE [30] toolkit was utilized to extract the
eGeMAPS features, including features related to frequency,
energy, and spectral parameters. The distortion due to the
hearing-impaired condition causes changes in pitch perception,
frequency discrimination, and amplitude modulation. These
acoustic parameters were reported to be highly associated with
SI [3]. For instance, perceiving speech spoken by a female
speaker is difficult for those with hearing loss since it has a
higher fundamental frequency, lower spectral energy below 4
kHz, and higher spectral energy above 4 kHz [31]. A stack
regressor consisting of a linear regressor, a support vector
machine regressor, and a random forest regressor was used
to learn the eGeMAPS features (as implemented in [14]).
By using the combination of these three regressors, we can
benefit from their individual strengths: providing interpretabil-
ity, handling non-linear relationships, and capturing complex
interactions, respectively. Together, they are used to improve
the accuracy and robustness of speech intelligibility prediction
from eGeMAPS features.
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TABLE I
EVALUATION RESULTS OF SI PREDICTION MODELS: THE BASELINE MBSTOI (MBSTOI [11] + MBSG MODEL [12]), HASPI [9] (LEFT AND RIGHT),

AND OUR PROPOSED METHODS. WE ALSO PROVIDE THE ABLATION TEST RESULTS (BY EXCLUDING ADDITIONAL FEATURES, I.E., EGEMAPS AND
WAVLM). THE DIRECTION OF THE ARROW INDICATES THE BETTER CRITERIA OF EACH EVALUATION METRIC. THE ONE-WAY ANOVA CONDUCTED ON

THE DATA REVEALED A SIGNIFICANT DIFFERENCE BETWEEN THE METHODS (p < 0.01).

Track 1 (closed-set) Track 2 (open-set)Method Binaural Non-intrusive
ρ ↑ RMSE ↓ R2 ↑ ρ ↑ RMSE ↓ R2 ↑

Baseline Yes No 0.62 28.52 ± 0.58 0.39 0.53 36.52 ± 1.35 −0.02
HASPI (left) No No 0.60 37.72 ± 0.60 −0.08 0.57 37.87 ± 1.20 −0.10
HASPI (right) No No 0.60 37.66 ± 0.60 −0.07 0.55 38.61 ± 1.23 −0.14
Proposed (Sinc) Yes Yes 0.72 25.46 ± 0.52 0.51 0.56 30.06 ± 1.19 0.31
Proposed (Gabor) Yes Yes 0.74 24.90 ± 0.51 0.53 0.64 28.04 ± 1.11 0.40
Ablation (Proposed (Gabor) + Excluded Feature)
eGeMAPS 0.61 28.95 ± 0.59 0.37 0.43 33.54 ± 1.33 0.14
wavLM 0.74 25.09 ± 0.51 0.52 0.64 27.85 ± 1.11 0.41
eGeMAPS + wavLM 0.63 30.49 ± 0.61 0.30 0.50 31.76 ± 1.26 0.23

IV. EXPERIMENTS

A. Dataset

We conducted our experiment on the CPC1 dataset2. A large
amount of speech data processed by hearing-aid (HA) sys-
tems were recorded in various scenes, and the corresponding
metadata were provided in this dataset. Each recorded speech
data point was a mixture of clean speech (target) and an
interference signal in an anechoic cuboid room3. Subsequently,
the improved speech in noise (SPIN) is defined as the recorded
speech data enhanced by a machine-learning-based HA sys-
tem. Six British English speakers and ten HA systems were
involved in generating the improved SPIN. Furthermore, the
SI label was obtained from the listening tests of 27 hearing-
impaired listeners. A pure-tone air conduction audiogram was
provided for each listener. CPC1 consists of (1) a closed-set
track, which includes all unseen scenes from seen listeners
and HA systems and; (2) a open-set track, which includes all
unseen scenes from unseen listeners and HA systems.

We followed the data distribution from the challenge to
train and evaluate our proposed method. To derive the optimal
hyperparameters, we perform a grid search on the batch size
and hidden units, ranging from 16 to 64. During the model
training, the Adam optimizer was used with a learning rate of
0.001. The number of channels for the wavegram-CNN model
is set to 32.

B. Evaluation

Three metrics were considered for evaluation: the Pearson
correlation coefficient (ρ), root-mean-square error (RMSE),
and coefficient of determination (R2). These metrics were
generally utilized for performance analysis of a regression task
(SI prediction, which ranges from 0 to 100, is the CPC1 task).
Additionally, we compared our proposed method with the
baseline MBSTOI [2] and HASPI [9]. The one-way analysis
of variance (ANOVA) was also performed to compare the

2https://claritychallenge.org/clarity CPC1 doc/docs/cpc1 data
3https://claritychallenge.org/clarity CPC1 doc/docs/cpc1 scenario
4https://speechbrain.github.io/

Fig. 2. Listening test results using a closed-set track. Actual is the label
of SI (correctness in the listening test). Baseline and proposed represent the
baseline MBSTOI and the proposed (Gabor) method, respectively, in Table I.
ρ̄ indicates the average ρ of the predicted SI and the actual correctness for
each listener.

differences among the predicted results obtained from each
method.

C. Results

The results are summarized in Table I. In general, SI
prediction could be significantly improved using our proposed
methods in comparison to HASPI, which was also developed
using the EarModel [10]. The proposed methods are also non-
intrusive and consider input from both ears (binaural). The best
results for the closed-set track were achieved by combining
all features and utilizing Gabor filters in the wavegram-CNN
model. Meanwhile, the best results for the open-set track were
achieved by the same model but excluding the wavLM input.
We predict that this is due to more factors from unknown
scenes with unknown systems and listeners embedded in the
wavLM feature in the evaluation dataset in the open-set track.

Since the aim of our proposed method is to investigate
the contribution of the auditory model based on hearing loss
conditions, we also plot the results from the listening tests
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in Fig. 2. The results show that our proposed method could
be used to predict SI better than the baseline MBSTOI for
almost all listeners (the ρ̄ value improved by more than 0.3).
Subsequently, the results show that the SI of listener L0227
is hard to predict, possibly due to the moderate hearing loss
in both ears for almost all frequency ranges (based on the
audiogram).

While this study provides valuable insights into the pre-
diction of SI, it is important to acknowledge certain limita-
tions that may impact the generalizability and robustness of
the findings. Firstly, the dataset might not fully capture the
diversity of listener characteristics and the complexity of real-
world speech degradation scenarios. For instance, the average
SI in Fig. 2 mostly lies in the interval of [60,80] because
the existing data for each listener is imbalanced, especially
for the score between 0 and 100. As a future direction, a
more diverse and extensive dataset encompassing a wide range
of degradation scenarios would enhance the robustness of the
proposed method.

V. CONCLUSION

In this paper, a nonintrusive speech intelligibility prediction
method was proposed by considering several relevant factors in
hearing perception, including the listener’s hearing condition,
the spectrum of speech, and the acoustic parameters. Three
main models, i.e., the auditory model, wavegram-CNN model,
and acoustic parameter model, were exploited to retrieve the
relevant information. Our experiment was conducted based on
the protocol in CPC1. The results showed that the proposed
method outperformed the intrusive baseline MBSTOI and
HASPI methods. In addition, our proposed method, which
is a nonintrusive (blind) method, does not require clean
speech as input. Our future direction will focus on refining
the binaural perceptual model and further analyzing hearing-
impaired conditions in noisy environments.
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