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This study introduces a novel method for explainable speaking skill assessment that utilizes a unique dataset 
featuring video recordings of conversational interviews for high-stakes outcomes (i.e., admission to high schools 
and universities). Unlike traditional automated speaking assessments that prioritize accuracy at the expense of 
interpretability, our approach employs a new multimodal dataset that integrates acoustic and linguistic features, 
visual cues, turn-taking patterns, and expert-derived scores quantifying various speaking skill aspects observed 
during interviews with young adolescents. This dataset is distinguished by its open-ended question format, which 
allows for varied responses from interviewees, providing a rich basis for analysis. The experimental results 
demonstrate that fusing interpretable features, including prosody, action units, and turn-taking, significantly 
enhances the accuracy of spoken English skill prediction, achieving an overall accuracy of 83% when a machine 
learning model based on the light gradient boosting algorithm is used. Furthermore, this research underscores 
the significant influence of external factors, such as interviewer behavior and the interview setting, particularly 
on the coherence aspect of spoken English proficiency. This focus on an innovative dataset and interpretable 
assessment tools offers a more nuanced understanding of speaking skills in high-stakes contexts than that offered 
by previous studies.

1. Introduction

The ability to communicate effectively in English is crucial for both 
academic success and professional advancement in today’s globalized 
world. Spoken English proficiency is a particularly important aspect of 
communication, as it allows individuals to participate in real-time con-

versations and exchange ideas fluently. Traditionally, spoken English 
proficiency has been assessed through human-administered tests, which 
are both time-consuming and expensive. However, the development of 
automated spoken English assessment systems has the potential to rev-

olutionize the way in which we evaluate language skills (Wang et al., 
2018).

An earlier study by Cheng et al. (Cheng et al., 2014) explored au-

tomatic scoring methods for spoken responses in the Arizona English 
Language Learner Assessment and reported high correlations between 
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machine and human scores across various age groups ranging from 4 
to 11 years. Additionally, they specified predefined criteria to evaluate 
speech quality objectively for automatic scoring. The criteria include 
pronunciation, fluency, and prosody to encompass aspects such as vo-

cabulary choice (Yoon et al., 2012) and sentence structure (Bernstein et 
al., 2010a). These criteria can help reduce bias and ensure consistency 
in scoring.

The automatic assessment of communication skills across various in-

teraction settings has been a well-researched area. In monolog scenarios, 
studies have concentrated on analyzing public speaking skills through 
features such as eye contact, gesture usage, and voice control (Wortwein 
et al., 2015; Chen et al., 2014). With respect to dyadic interactions, re-

search has focused on job interviews, where speech content, prosody, 
and body language features have been extracted to predict qualities 
such as hireability and interpersonal skills (Nguyen et al., 2014; Chen 
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et al., 2017; Ohba et al., 2022). Additionally, research has examined 
social skills in group interactions, particularly leadership, by analyz-

ing features such as speaking turns and nonverbal cues (Sanchez-Cortes 
et al., 2013; Okada et al., 2016). While monolog-based speaking as-

sessments are prevalent, they lack real-world relevance, particularly in 
online learning environments where teacher–student (dyadic or group) 
interaction is crucial. However, existing research on automated speak-

ing skills assessment in such interactive settings remains limited and 
focuses primarily on improving accuracy using single modalities such 
as text or audio (Townshend et al., 1998; Cheng et al., 2014; Yoon et 
al., 2012; Bernstein et al., 2010a).

While existing research on automated speaking skills assessment in 
interactive settings has shown promising results in improving accuracy, 
it often relies on complex models that are difficult to interpret. This 
overreliance on black-box models presents significant limitations. First, 
it hinders our understanding of the intricate interplay of factors that con-

tribute to effective spoken communication, such as fluency, vocabulary, 
grammar, and pronunciation. Second, the lack of model transparency 
severely limits the ability to provide meaningful and actionable feed-

back to learners and instructors. To address these limitations, in this 
paper, we propose an approach that leverages a multioutput learning 
framework (Xu et al., 2019). By simultaneously predicting multiple as-

pects of spoken performance (e.g., fluency, accuracy, complexity) while 
considering multimodal cues (e.g., audio, video, text), our approach 
aims to achieve a balance between prediction accuracy and model in-

terpretability. This framework allows for the explicit modeling of the 
relationships between different aspects of speaking proficiency, thereby 
enhancing our understanding of the underlying factors and enabling the 
generation of more informative feedback for learners and educators.

Furthermore, we analyze multimodal cues across the entirety of 
speaking assessment criteria within open-ended interview settings. Un-

like previous studies, which often rely on fixed-question formats (Saeki 
et al., 2021), our approach allows for a more naturalistic and compre-

hensive assessment of spoken communication skills. This approach en-

ables the capture of a broader range of abilities, including sociolinguis-

tic competence and the ability to engage in spontaneous and creative 
communication, which are more naturally exhibited during open-ended 
interactions (Davis & Norris, 2024).

The expected outputs of our study focus on the following three re-

search questions (RQs):

(𝑅𝑄1) How can spoken English scores be accurately predicted while 
maintaining model interpretability?

(𝑅𝑄2) Which cues contribute most significantly to accurately predict-

ing speaking skills?

(𝑅𝑄3) How do external factors influence interviewee performance?

Unlike previous works, we address our research questions using a 
novel dataset of structured Vericant interview sessions2 that are specif-

ically designed for high school students applying to U.S. universities. 
This dataset offers a reliable assessment of critical spoken communi-

cation skills in a high-stakes, open-ended interview scenario. By leveraging 
open-ended questions, our findings hold greater generalizability by cap-

turing a broader range of speaking abilities. Furthermore, we delve into 
the interpretability of the assessment process by analyzing how infor-

mation from multimodal cues and external factors contributes to the 
evaluation of speaking skills.

2. Related work

This section reviews the literature related to automatic spoken En-

glish assessment, challenges in the discourse context, and interpretabil-

ity.

2 https://www.vericant.com/see/.

2.1. Automatic spoken English assessment

Automated spoken English assessment has evolved significantly, 
driven by the increasing demand for efficient and objective language 
proficiency evaluation. This progression has led to a shift from tradi-

tional methods to sophisticated AI-driven approaches.

Automated speaking tests have demonstrated strong validity, accu-

rately reflecting a person’s spoken communication ability. Studies, such 
as Bernstein’s research on ‘facility-in-L2’ tests (Bernstein et al., 2010b), 
have shown high correlations between automated assessments and tra-

ditional oral proficiency interviews, indicating their reliability across 
diverse languages, including English. These tests effectively measure 
both receptive and productive language skills by requiring meaningful 
language use.

To optimize assessment accuracy, a hybrid approach that combines 
both human and automated scoring has emerged (Yoon & Zechner, 
2017). This approach leverages automated systems to score the majority 
of responses, whereas human raters focus on complex cases identified 
by filtering systems. This collaborative method has demonstrated signif-

icant improvements in scoring performance and validity.

The advent of deep learning and advanced speech recognition sys-

tems has revolutionized automated spoken English assessment (Wang et 
al., 2018). These systems effectively handle the variability and disflu-

ency characteristics of nonnative speech, providing scores comparable 
to those of human examiners. Techniques such as Gaussian process grad-

ing and interpolation with human grades further enhance the accuracy 
and reliability of these automated assessments.

2.2. Challenges in discourse context

The rise of online education has significantly increased the demand 
for automated assessment tools that can evaluate speaking skills in in-

teractive settings, such as dialogs (Eskenazi, 2009). However, analyzing 
conversations presents unique challenges. First, the inherent variability 
in speaking patterns and responses during dialogs increases the complex-

ity of assessment (Oliveri & Tannenbaum, 2019). Second, the limited 
availability of large, dialog-based datasets often restricts research to 
using single modalities (text or audio), hindering a comprehensive un-

derstanding of communication within interactive environments (Saeki 
et al., 2021).

These challenges underscore the need for innovative approaches that 
can capture the dynamic nature of conversational interactions. Recent 
research has emphasized the importance of examining speaking profi-

ciency within its natural discourse context, particularly for young learn-

ers, as exemplified by the work of Firth and Wagner (Firth & Wagner, 
2017). This approach necessitates the development of assessment tools 
that analyze not only the content of speech but also the way in which 
it unfolds in interactive settings, including turn-taking, back-and-forth 
exchanges, and the use of language to negotiate meaning.

To address these challenges, researchers have developed automated 
systems for assessing conversational speaking skills, which involve in-

teractions with an interlocutor (McKnight et al., 2023). These systems 
utilize advanced models to process audio and text data, providing ac-

curate assessments of conversational proficiency. By leveraging these 
advancements and addressing the limitations of current approaches, re-

searchers can develop more robust and effective automated assessment 
tools for evaluating conversational skills in the context of online educa-

tion and beyond.

2.3. From speaking accuracy to interpretability

The Common European Framework of Reference for Languages 
(CEFR) (Council of Europe, 2018) provides a comprehensive framework 
for assessing language proficiency across Europe and beyond. The CEFR 
provides a framework for assessing language proficiency across six levels 
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(A1 to C2). It outlines key components of language ability, namely, lex-

ical range, grammatical accuracy, fluency, pronunciation, interactional 
competence, and coherence.

• Lexical Range: Refers to the breadth and depth of the vocabulary 
used.

• Grammatical Accuracy: Assesses the correct use of grammatical 
structures.

• Fluency: Measures the smoothness and ease of speech.

• Pronunciation: Evaluates the clarity and accuracy of pronuncia-

tion.

• Interactional Competence: Focuses on effective communication 
and interaction.

• Coherence: Assesses the logical organization and connection of 
ideas.

Despite the comprehensiveness of the CEFR, many automated spoken 
English assessments have historically focused on limited aspects, such 
as grammar correctness or fluency, and often rely on simplistic met-

rics such as Likert scales. This limited scope hinders the ability of these 
systems to provide nuanced feedback aligned with the full spectrum of 
speaking skills outlined in the CEFR.

Recent efforts have been aimed at improving the interpretability of 
automated assessments. Gretter et al. (Gretter et al., 2019) demonstrated 
this by defining automatic scores on the basis of low-level proficiency 
indicators, such as lexical richness, syntax correctness, pronunciation 
quality, discourse fluency, and semantic relevance to the prompt, i.e., 
indicators that are typically aligned with human expert evaluations of 
language proficiency.

Saeki et al. (2021) (Saeki et al., 2021) contributed by creating a 
large dialog-based interview dataset for assessing English proficiency 
in Japanese learners. Their approach aligns with the CEFR framework. 
They further proposed a neural network model that integrates audio, 
text, and visual cues for dialog-based assessment. However, the model’s 
reliance on predefined questions and predefined features (such as a lan-

guage model posterior for grammatical accuracy) raises concerns about 
potential feature dependence, which may limit its generalizability and 
impact overall assessment accuracy. Furthermore, the dataset exhibited 
a moderate level of interrater reliability (Krippendorff’s 𝛼 0.56–0.75, 
average 0.65), indicating some variability in human expert annotations. 
This variability can introduce noise into the dataset and pose challenges 
for training and evaluating robust automated assessment systems.

Another significant limitation of existing works lies in their lack of 
interpretability. This lack of transparency hinders our understanding 
of the spoken communication process, which limits our ability to pro-

vide meaningful feedback to learners and instructors. To address this 
challenge, we propose a multioutput learning framework for automatic 
comprehensive speaking skill assessment (Xu et al., 2019). By simultane-

ously predicting multiple aspects of speaking performance (e.g., fluency, 
accuracy, complexity) while considering multimodal cues (e.g., audio, 
video, text), our approach aims to improve both prediction accuracy and 
model interpretability. This framework allows for a deeper understand-

ing of the intricate relationships between different aspects of speaking 
proficiency, ultimately enabling the generation of more informative and 
actionable feedback for learners and instructors.

In summary, our review of previous research identifies limitations 
in automated assessment of spoken proficiency, particularly within dis-

course contexts. Existing systems often rely on restricted assessment 
labels, hindering their ability to comprehensively capture the nuances of 
spoken English in interactive environments. This study addresses these 
shortcomings by proposing a novel approach that engages in the follow-

ing tasks:

• Models key aspects of spoken English skills: Beyond traditional 
metrics, we focus on a broader range of skills, including fluency, 
accuracy, complexity, and discourse management.

• Incorporates multimodal analysis and a multioutput learning 
framework: We leverage audio, video, and text data to gain a more 
holistic and comprehensive understanding of multiple aspects of 
speaking performance.

• Utilizes a diverse dataset: We employ a multimodal dataset that 
includes both remote and in-person settings, allowing for a more 
robust and generalizable model.

This multifaceted approach aims to advance the field of automated 
speaking proficiency assessment by providing more comprehensive, in-

terpretable, and reliable evaluations.

3. Multimodal spoken English evaluation dataset

To facilitate the development and evaluation of automatic compre-

hensive speaking skill assessment systems, we introduce a novel multi-

modal spoken English evaluation (SEE) dataset. This dataset comprises 
a diverse collection of spoken English interactions, capturing a wide 
range of interview content and proficiency levels. The dataset includes 
synchronized audio, video, and text transcripts, providing multimodal 
information for analysis. A detailed description of the dataset collection 
process, interview content, and SEE assessment annotation procedures 
is presented in the following section.

3.1. Data collection

The multimodal dataset comprises video recordings of interviews 
conducted between expert communication evaluators (interviewers) 
and high school students preparing for U.S. university applications (in-

terviewees). The interviewees, whose native languages are non-English, 
were evenly distributed across gender (female: 210, male: 236) and age 
(9–16). To capture a variety of communication contexts, the interviews 
were conducted in both remote (102 clips) and in-person (344 clips) 
settings. The data collection received ethical approval from the authors’ 
institutional committees.

In addition to the video data, the dataset also includes the extracted 
audio and a transcript generated by AWS Amazon diarization3 tool. 
Amazon diarization is a feature within the AWS Amazon Transcribe ser-

vice that automatically identifies and separates different speakers in an 
audio recording. The resulting transcript from the diarization tool has 
been redacted to remove any personally identifiable information (PII). 
Importantly, the transcript includes timestamps that mark the beginning 
and end of both the interviewers’ and the interviewees’ turns, allowing 
for a detailed analysis of the conversation flow.

3.2. Interview content

The interviews provide a well-rounded assessment of personal qual-

ities, communication styles, and career goals. The following is a break-

down of the key areas explored:

• Leisure Activities: The interviews delve into the interviewees’ hob-

bies and how they spend their free time, revealing insights into their 
interests and personalities.

• Image Description: By presenting the interviewees with an image 
and asking them to describe it, the interviewer assessed their ob-

servational skills, critical thinking abilities, and ability to interpret 
visual cues.

• Social Dynamics: Through discussions about their friendships, the 
interviewees showcased their communication style, ability to col-

laborate, and approach to conflict resolution.

3 https://docs.aws.amazon.com/transcribe/latest/dg/diarization-output-

batch.html.
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• Personality Traits: The interviewees responded to a prompt that 
revealed their awareness of the complexities of emotional resilience, 
including both its advantages and potential drawbacks.

• Career Aspirations: The interviews provide a clear picture of the in-

terviewees’ career goals, including their motivations and long-term 
vision for their professional life.

The abovementioned explored areas serve as a sample; the specific 
content may vary depending on the interview flow and the interviewees’ 
responses.

3.3. SEE assessment criteria and annotation procedures

The SEE score2 goes beyond simply measuring grammar and vocab-

ulary knowledge and instead focuses on how well someone can use 
language for social purposes. The SEE score is a measure of a per-

son’s spoken English proficiency during a Vericant interview. Unlike 
traditional tests that focus on grammar and vocabulary, the SEE score 
evaluates how well a person can communicate in a real-life conversa-

tion.

The SEE score ranges from 1 (minimal proficiency) to 6 (native 
speaker level). Applicants receive a detailed report explaining their 
score and how it reflects their strengths and weaknesses in different 
communication areas. This score provides valuable information to both 
schools and applicants. Schools can use it to assess an applicant’s ability 
to participate effectively in an English-speaking academic environment. 
For applicants, the SEE score offers clear feedback on their spoken En-

glish skills and helps them identify areas for improvement.

The SEE score considers the following five key aspects:

• Range: Using appropriate vocabulary for complex ideas,

• Accuracy: Forming grammatically correct sentences,

• Fluency: Speaking smoothly and naturally,

• Interaction: Actively participating in the conversation, and

• Coherence: Clearly conveying ideas with logical flow.

To establish the ground truth for the SEE scores, two expert human 
annotators independently evaluated each interview video clip using a 
predefined scoring rubric that considered all the subvariables listed in 
Table 1. The annotators were native English speakers from a native 
English-speaking country, and they were proficient in both grammar 
and syntax. They demonstrated proficiency in English, as evidenced by 
receiving an SEE score of 6 during the interview process.

To ensure consistency in the scoring process, we calculated Krippen-

dorff’s 𝛼 (Hayes & Krippendorff, 2007), which is a measure of inter-

rater reliability. The results, which are presented in the Krippendorff’s 
𝛼 column of Table 1, demonstrate excellent agreement between the 
annotators (averaging 𝛼 = 0.8 across all subvariables). The final SEE 
score, which is calculated by averaging the raters’ assessments on a scale 
ranging from 1 to 6 (with decimals), reflects a speaker’s overall commu-

nication ability. A score of 1 indicates very limited conversation skills, 
whereas a score of 6 signifies the proficiency of a fluent and articulate 
speaker.

The dataset consists of 267 samples with high SEE scores and 179 
samples with low SEE scores. These categories were defined using a 
threshold SEE score of 4:

𝑦 =

{
0 SEE-score < 4

1 otherwise
(1)

where 𝑦 is the target label for the binary classification task. The thresh-

old of 4 for binary classification aligns with SEE score definitions (4 or 
above: proficient; 3: intermediate; 2 or below: beginner). The distribu-

tion of target labels for the regression task is illustrated in Fig. 1.

Table 1
Description of SEE assessment criteria.

Aspect ID Description Krippendorff’s 𝛼

Range

R1 Range of topics 0.801 
R2 Range of vocabulary 0.777 
R3 Circumlocution 0.842 
R4 Precision of language 0.823

Accuracy

A1 Sentence structure 0.832 
A2 Subject-verb agreement 0.735 
A3 Pronouns 0.659 
A4 Tenses 0.836 
A5 Conjugation and prepositions 0.817

Fluency

F1 Accent 0.726 
F2 Tempo and pausing 0.822 
F3 Intonation and fluidity 0.826 
F4 Free speech 0.842

Interaction

I1 Participation 0.630 
I2 Conversational ease 0.837 
I3 Clarifications 0.836 
I4 Conversational cues 0.830

Coherence

C1 Conversational planning 0.848 
C2 Details 0.839 
C3 Rambling 0.842 

Fig. 1. SEE score distribution according to sex: female (210 clips) and male (236 
clips).

4. Method

Fig. 2 shows our approach to predicting spoken English evaluation 
scores by leveraging a combination of multimodal features extracted 
from interview video data. A multioutput machine learning algorithm 
was trained on an expert-rated SEE dataset to learn complex patterns 
associated with different proficiency levels and subvariables in the SEE 
assessment criteria.

4.1. Feature extraction

A multimodal feature set was employed for SEE score prediction, 
encompassing acoustic, linguistic, visual, and turn-taking attributes. Ta-

ble 2 provides a detailed summary of these feature modalities.

4.1.1. Acoustic feature

[WavLM] For the acoustic feature, we employed the waveform lan-

guage model (WavLM) as described by Chen et al. (Chen et al., 2022), 
which represents a recent advancement in speech processing. Given the 
varied durations of the input videos in the multimodal dataset, ranging 
from 10 to 20 minutes, we extracted the output of the embedding layer 
of WavLM, comprising 1,024 units. This extraction was performed us-

ing each utterance as the input. To standardize the feature length across 
all videos, we unified the length through a combination of clipping and 
zero padding, resulting in a final length of 66,560 units. For longer wav 
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Fig. 2. Overview of the proposed automatic SEE prediction. (Note: The images of learners are for illustrative purposes only and do not necessarily represent the actual 
demographic breakdown of the research participants. The participants’ faces were intentionally blurred to protect their privacy and comply with ethical guidelines.)

Table 2
Summary of extracted multimodal features.

Modality Feature name #Feature Description (feature index) 

Acoustic

WavLM (Chen et al., 2022) 1024 Waveform language model 

prosody (Dehak et al., 2007; Vásquez-Correa et al., 2018) 103

F0-based features (1-30) 
Energy-based features (31-78) 
Duration-based features (79-103)

Linguistic BERT (Lee et al., 2024; Li & Li, 2023) 1024 Bidirectional encoder 
representations from transformers 

Visual HAU 18 Histogram of AUs extracted 
using OpenFace (Amos et al., 2016) 

Turn-taking speaker turn’s utterances 6 Count, sum, mean, standard 
deviation, skewness, kurtosis 

files, we centered the clip around the audio by determining the mid-

point, which was calculated as half of the difference between the total 
length of the original wav file and the target length of 66,560 units. For 
shorter wav files, we simply zero-padded the insufficient units.

[Prosody] To analyze spoken English proficiency comprehensively, 
we extracted 103 prosody features from the continuous speech segments 
in the interview recordings. These features can capture how a speaker 
utilizes pitch (fundamental frequency or F0), energy (loudness), and du-

ration to deliver spoken language. We employed DisVoice,4 which is a 
well-established tool, to extract these features efficiently. The specific 
feature set we employed was informed by prior research on prosodic 
analysis for speaker verification (Dehak et al., 2007) and the evaluation 
of speech disorders (Vásquez-Correa et al., 2018).

For pitch, we computed statistics such as average, standard devi-

ation, maximum, minimum, skewness, and kurtosis, not only for the 
overall F0 contour but also for specific segments such as the first and last 
voiced parts. Similarly, we analyzed energy features for both voiced and 
unvoiced segments, providing insights into the speaker’s volume control 
and emphasis patterns. Additionally, we extracted various duration-

based features, including the rate of voiced speech, average and vari-

ability in the length of voiced and unvoiced segments, and the ratios 
between pause durations and voiced/unvoiced speech durations. These 
comprehensive prosody features offer valuable information about the 
speaker’s fluency, intonation, and overall delivery style, which can be 
crucial for understanding spoken English proficiency.

4 https://github.com/jcvasquezc/DisVoice/tree/master.

4.1.2. Linguistic feature

[BERT] We leveraged state-of-the-art (SOTA) text features for each 
chunk using bidirectional encoder representations from transformers 
(BERT). BERT is a pretrained deep learning model that excels at captur-

ing the meaning and context of textual information. We used the pre-

trained model of BERT5 (Lee et al., 2024; Li & Li, 2023). In March 2024, 
this BERT model achieved outstanding results on the massive text em-

bedding benchmark leaderboard, outperforming commercially available 
options such as OpenAI’s text embedding-3-large and even matching the 
performance of much larger models such as the echo-mistral-7b, which 
is 20 times larger.

4.1.3. Visual feature

[Histogram of Action Units (HAU)] We utilized OpenFace (Amos 
et al., 2016) to extract the AUs from a given video clip. Each AU cor-

responds to a specific muscle movement in the face, and the histogram 
visually represents the frequency of occurrence for each AU throughout 
the interview. By analyzing the histogram of each AU, we can identify 
patterns in the speaker’s emotional state and expressivity. For example, 
a high frequency of AU 1 (raised eyebrows) might suggest moments of 
surprise or confusion, whereas frequent AU 12 (lip corner pull) could 
indicate smile or positive engagement. Examining these patterns in con-

junction with the spoken content and other features can offer a more 
comprehensive understanding of the speaker’s communication style and 
their potential impact on the SEE score.

5 https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1.
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4.1.4. Turn-taking feature

To capture the conversational dynamics between the interviewer 
and interviewee, we extracted various statistical properties from their 
turn-taking patterns. These properties were derived from the start and 
end timestamps of each speaker’s utterances within conversation chunks 
(utterances). The features included count (total number of utterances), 
mean, standard deviation, skewness (distribution asymmetry), and kur-

tosis (peakedness of the distribution) of the utterance duration. By ana-

lyzing these features, we aim to better understand how factors such as 
conversation flow, speaking pace, and turn-taking balance might influ-

ence the overall SEE score.

4.2. Machine learning model

We propose a multioutput light gradient boosting model (LightGBM) 
for SEE score prediction. Multioutput learning has emerged as a valuable 
tool for enhancing the interpretability of AI models (Xu et al., 2019). 
This approach involves simultaneously training a model on a set of inter-

connected labels, such as accuracy, fluency, and coherence in speaking 
skills. By analyzing how the model utilizes information from various 
modalities (audio, text, visuals) for each individual task, we can obtain 
insights into the specific cues that contribute to each assessed speaking 
skill. This heightened explainability is particularly valuable in spoken 
English assessment, as it empowers educators and learners to pinpoint 
areas of strength and weakness with greater precision. Ultimately, this 
approach leads to more targeted instruction and facilitates the develop-

ment of personalized learning experiences.

The objective function of the multioutput LightGBM can be expressed 
as follows:

min𝐿(𝑌 ,𝐹 (𝑋)), (2)

where:

𝐹 (𝑋) = Σ𝑀
𝑚=1𝐹𝑚(𝑋) (3)

where 𝐹𝑚(𝑋) is the prediction for the 𝑚-th target variable, and 𝑁 and 
𝑀 are the number of samples and target variables, respectively. 𝑋 is 
the feature matrix of size 𝑁 × 𝑃 . 𝑌 is the target matrix of size 𝑁 ×𝑀 . 
𝐹 is the ensemble of decision trees. Finally, 𝐿 is the loss function.

Compared with traditional deep learning models, we subsequently 
chose the LightGBM since it offers several advantages, including faster 
training times, lower memory usage, and potentially superior accuracy 
in certain tasks (Ke et al., 2017). The original LightGBM is an algorithm 
that combines a gradient boosting decision tree (GBDT), gradient-based 
one-sided sampling (GOSS), and exclusive feature bundling (EFB). It has 
been reported to work well on multiple public datasets and can reduce 
the training process by more than 20 times with almost similar accuracy.

In our preliminary experiments in which a subset of development 
data was used to compare various machine learning models, the Light-

GBM model indeed achieved the highest accuracy in all unimodal set-

tings among the evaluated methods (CNN, CNN-LSTM, and LightGBM). 
Owing to this strong performance and its ability to provide information 
on feature importance, we opted to focus on the LightGBM model for 
our proposed method.

5. Experiment

This section details our experiments designed to validate the effec-

tiveness of our proposed multioutput learning approach for predicting 
SEE scores. We aim to answer three key research questions addressed in 
Section 1, with the following proposed approaches:

• (RQ1): We investigate not only the inherent difficulty of predicting 
SEE scores but also how multioutput learning on multiple speaking 
skill indices can contribute to a more interpretable assessment of 
spoken English proficiency.

• (RQ2): We identify the features that have the strongest correlation 
with the SEE score and its associated assessment criteria (fluency, 
range, coherence, etc.).

• (RQ3): We examine two external factors that might affect intervie-

wee performance. The first factor is the interviewer’s features. The 
second factor is the interview setting, i.e., remote or in person.

5.1. Experiment settings

As mentioned in Section 4, we utilized a multioutput LightGBM for 
SEE score prediction on a multimodal SEE dataset (Section 3.1). All 
features were extracted on the basis of the utterance obtained from di-

arization transcription. We carried out a hyperparameter tuning process 
using a grid search algorithm as part of the cross-validation procedure 
to achieve optimal model performance. This process involved adjusting 
key parameters, such as the learning rate (set to 0.1) and the maximum 
number of leaves (set to 30). A gradient-boosting decision tree algorithm 
was employed, utilizing binary log-loss as the loss function for the clas-

sification task (identifying high versus low proficiency) and RMSE for 
the regression task (predicting the exact SEE score). The remaining hy-

perparameters were set to the default values provided by the LightGBM 
library6 to ensure consistency and facilitate model interpretability.

We also leveraged multioutput learning, which is an approach in 
which a single model tackles multiple related labels simultaneously. The 
model analyzes not only the final SEE score but also intermediate factors 
in assessing spoken English proficiency. As mentioned in Section 3.1, the 
dataset comprises remote and in-person interviews. To account for these 
settings and prevent bias, we used the standard scaler technique. This 
technique normalizes each feature by subtracting the mean and dividing 
by the standard deviation.

5.2. Evaluation

To ensure the model’s generalizability and robustness, we conducted 
extensive experiments using both binary classification and regression. 
Fivefold cross-validation with three repetitions was employed for evalu-

ation. Furthermore, stratified cross-validation (Diamantidis et al., 2000) 
was used to ensure that each fold maintained the same class distribu-

tion as the entire dataset, which is crucial for imbalanced datasets such 
as spoken English scores.

To comprehensively assess the classification performance, we em-

ployed two metrics, namely, accuracy (overall percentage of correct 
predictions) and macro F1 (combining precision and recall for a bal-

anced view, which is especially important for imbalanced datasets). 
We used both metrics to understand the overall performance across all 
classes and in an imbalanced setting. During training, we utilized binary 
cross-entropy loss. This common function penalizes the model for incor-

rect predictions, guiding it toward better classification of high and low 
proficiency.

The regression experiment follows a similar approach but has two 
key differences in evaluation. Instead of stratified cross-validation, we 
used random cross-validation, as the SEE score is a continuous value. 
Additionally, the loss function for regression uses the RMSE (root mean 
squared error) to measure the difference between the predicted and ac-

tual scores. We assessed regression model performance using Pearson 
correlation (𝜌) and RMSE.

5.3. Results

We carried out three main analyses to answer our research ques-

tions. First, we compared the efficacy of unimodal and multimodal 
approaches. Second, we investigated the features and the sequences 
that exert the strongest influence on SEE scores. This analysis provided 

6 https://lightgbm.readthedocs.io/en/latest/index.html.
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Table 3
Experimental results using unimodal feature. We compared the results of binary classification and regression using the state-of-the-art features, i.e., WavLM and 
BERT, and also more interpretable conventional features, i.e., prosody, HAU, and speaker turn’s utterances (“Turn”). The description of the “Target” column is 
detailed in Table 1. The corresponding multicomparison pairwise significant tests are shown in Appendix A and Appendix B.

Target

Binary classification Regression 
WavLM Prosody BERT HAU Turn WavLM Prosody BERT HAU Turn 
Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 𝜌 RMSE 𝜌 RMSE 𝜌 RMSE 𝜌 RMSE 𝜌 RMSE 

SEE 81.98 81.21 82.05 81.17 79.52 77.72 65.10 62.87 81.84 81.00 0.666 0.346 0.618 0.384 0.608 0.395 0.309 0.948 0.622 0.400

R1 81.54 79.93 81.46 79.77 76.54 72.93 67.64 63.91 78.10 76.41 0.641 0.441 0.609 0.474 0.590 0.495 0.386 0.674 0.625 0.477 
R2 76.60 76.45 75.40 75.27 73.10 72.85 59.57 58.82 72.50 72.29 0.607 0.388 0.554 0.423 0.533 0.442 0.364 0.555 0.470 0.522 
R3 76.09 75.68 74.59 74.15 68.99 68.00 61.67 60.38 72.43 71.99 0.625 0.394 0.544 0.457 0.509 0.479 0.355 0.595 0.533 0.493 
R4 76.75 76.36 73.91 73.50 71.45 70.63 60.40 59.04 72.27 71.91 0.604 0.422 0.534 0.474 0.527 0.479 0.333 0.626 0.493 0.540

A1 71.67 67.99 69.43 64.82 71.90 64.39 65.10 58.94 67.19 63.44 0.560 0.476 0.474 0.54 0.536 0.494 0.271 0.909 0.429 0.611 
A2 69.29 68.83 69.43 68.97 70.25 69.40 61.66 59.99 68.69 68.26 0.502 0.491 0.448 0.527 0.517 0.480 0.249 1.000 0.414 0.591 
A3 78.47 76.06 76.53 73.45 74.58 68.87 64.05 58.84 71.68 68.55 0.535 0.463 0.491 0.494 0.528 0.469 0.265 0.943 0.407 0.588 
A4 72.04 66.16 71.01 64.49 73.69 63.93 65.85 55.78 68.01 62.31 0.540 0.528 0.502 0.557 0.518 0.549 0.215 0.917 0.411 0.685 
A5 69.06 64.63 71.00 66.32 71.74 63.74 66.00 58.49 66.89 62.79 0.514 0.476 0.455 0.511 0.486 0.489 0.265 0.907 0.400 0.594

F1 72.94 70.49 73.61 70.87 74.30 70.90 64.05 60.80 73.32 71.70 0.548 0.451 0.499 0.485 0.510 0.474 0.279 0.958 0.453 0.548 
F2 77.36 77.14 77.43 77.22 71.82 71.29 60.99 60.31 75.04 74.75 0.658 0.400 0.627 0.43 0.555 0.486 0.294 0.979 0.611 0.461 
F3 76.61 76.37 77.20 77.03 71.37 70.91 61.66 61.12 73.10 72.85 0.594 0.441 0.592 0.444 0.563 0.467 0.303 0.979 0.548 0.505 
F4 84.53 84.04 83.86 83.27 75.26 73.59 67.94 66.36 83.85 83.28 0.682 0.398 0.678 0.402 0.596 0.484 0.360 0.908 0.688 0.412

I1 81.08 80.84 81.09 80.74 75.71 75.06 64.28 63.70 81.09 80.78 0.674 0.394 0.651 0.417 0.610 0.454 0.346 0.936 0.679 0.402 
I2 81.69 81.48 81.32 81.10 74.74 74.31 63.75 63.31 81.17 80.93 0.691 0.390 0.662 0.418 0.563 0.508 0.324 0.969 0.688 0.404 
I3 80.12 79.61 78.48 77.93 77.88 76.87 65.62 64.59 77.44 76.78 0.669 0.416 0.634 0.452 0.629 0.455 0.330 0.948 0.642 0.464 
I4 78.92 72.13 82.81 77.65 76.61 63.29 71.00 59.71 78.55 73.27 0.544 0.384 0.527 0.395 0.468 0.424 0.279 0.834 0.529 0.412

C1 77.20 76.76 77.19 76.65 68.00 66.77 61.21 59.48 74.22 73.76 0.636 0.422 0.591 0.461 0.560 0.487 0.232 1.025 0.581 0.494 
C2 78.55 78.40 78.39 78.22 70.85 70.67 61.59 61.24 77.65 77.48 0.662 0.386 0.614 0.428 0.585 0.458 0.248 1.049 0.630 0.434 
C3 73.69 73.41 71.67 71.46 66.74 66.31 58.90 58.27 71.23 71.00 0.554 0.439 0.517 0.461 0.472 0.487 0.223 1.030 0.505 0.496 

Table 4
Experimental results using multimodal features of interpretable conventional features. The description of the “Target” column is detailed in Table 1. The 
corresponding multicomparison pairwise significant tests are shown in Appendix A and Appendix B.

Target

Binary classification Regression 
Prosody-HAU Prosody-Turn HAU-Turn Prosody-HAU-Turn Prosody-HAU Prosody-Turn HAU-Turn Prosody-HAU-Turn 
Acc. F1 Acc. F1 Acc. F1 Acc. F1 𝜌 RMSE 𝜌 RMSE 𝜌 RMSE 𝜌 RMSE 

SEE 81.83 80.93 82.66 81.78 81.46 80.63 83.18 82.35 0.628 0.375 0.681 0.333 0.658 0.356 0.680 0.335

R1 76.30 75.80 76.97 76.59 72.28 71.67 76.45 76.06 0.594 0.458 0.646 0.413 0.611 0.453 0.642 0.416 
R2 78.61 78.44 79.21 79.04 76.91 76.75 79.51 79.35 0.625 0.421 0.680 0.371 0.631 0.424 0.680 0.373 
R3 71.59 71.37 73.39 73.15 68.84 68.66 71.15 70.86 0.525 0.455 0.574 0.422 0.529 0.471 0.576 0.421 
R4 81.60 79.89 81.76 80.22 79.15 77.42 82.28 80.70 0.616 0.465 0.680 0.404 0.652 0.438 0.676 0.409

A1 75.63 75.49 76.22 76.08 72.73 72.57 76.16 76.01 0.557 0.423 0.597 0.394 0.538 0.451 0.590 0.400 
A2 74.74 74.34 76.24 75.93 72.95 72.49 75.34 75.01 0.559 0.445 0.607 0.410 0.564 0.457 0.604 0.413 
A3 73.99 73.59 74.21 73.80 71.45 71.00 74.13 73.74 0.532 0.476 0.585 0.436 0.514 0.51 0.582 0.437 
A4 69.06 64.46 69.73 65.59 67.27 62.90 70.33 66.03 0.484 0.533 0.554 0.479 0.460 0.572 0.545 0.487 
A5 68.24 67.71 68.53 68.09 66.60 65.87 68.23 67.70 0.440 0.530 0.491 0.497 0.442 0.555 0.498 0.491

F1 76.45 73.27 76.60 73.68 73.17 70.09 76.60 73.65 0.496 0.490 0.539 0.462 0.467 0.529 0.536 0.464 
F2 69.66 62.62 71.15 64.36 69.96 64.30 71.23 64.81 0.500 0.560 0.521 0.546 0.482 0.595 0.519 0.546 
F3 70.55 66.01 71.15 66.90 67.94 63.28 69.58 64.55 0.452 0.513 0.497 0.484 0.46 0.527 0.488 0.490 
F4 72.57 69.52 73.01 70.17 72.64 70.50 73.61 71.01 0.503 0.482 0.500 0.487 0.453 0.538 0.506 0.482

I1 77.72 77.53 78.62 78.44 75.94 75.74 78.40 78.20 0.635 0.422 0.669 0.392 0.644 0.425 0.668 0.394 
I2 76.76 76.59 76.76 76.59 76.83 76.61 77.13 76.93 0.598 0.439 0.617 0.423 0.605 0.439 0.628 0.413 
I3 84.31 83.75 86.18 85.69 83.64 83.06 86.25 85.75 0.685 0.394 0.735 0.344 0.712 0.373 0.734 0.345 
I4 80.26 79.93 82.20 81.90 80.86 80.61 82.73 82.41 0.658 0.410 0.705 0.364 0.692 0.38 0.706 0.364

C1 81.09 80.88 82.13 81.86 81.09 80.85 81.69 81.41 0.668 0.412 0.714 0.366 0.692 0.394 0.717 0.362 
C2 78.17 77.65 79.60 79.00 78.93 78.43 78.93 78.35 0.640 0.445 0.701 0.383 0.699 0.389 0.702 0.382 
C3 81.54 75.76 81.39 75.83 77.80 72.00 81.84 76.28 0.521 0.398 0.574 0.366 0.568 0.379 0.564 0.374 

valuable insights into the specific aspects of spoken English proficiency 
that the model prioritizes during prediction. Finally, the inclusion of 
interviewer features within the model revealed a measurable impact 
on the prediction accuracy of the SEE score. This finding suggests that 
seemingly minor aspects, such as interviewer communication style or 
questioning technique, may play a significant role in interviewee per-

formance.

5.3.1. Learning multiple speaking skill indices assessment

Table 3 presents the results of our multioutput prediction using 
unimodal features, whereas Table 4 shows the results achieved with 
multimodal features. In the multimodal approach, we incorporated ex-

plainable features, i.e., prosody, histogram of action units (HAU), and 
turn-taking features. Although potentially more effective for scoring, 
WavLM and BERT features were excluded because of their inherent lack 
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Fig. 3. Feature importance of prosody and HAU. 

of interpretability. While these embedding layer vectors have previously 
demonstrated high levels of accuracy in various tasks, their black-box 
nature hinders their suitability for an explainable assessment system (see 
Tables A.1, A.2, B.1 and B.2).

From Table 3, we report several findings from the unimodal ap-

proach. Interestingly, both the classification and regression tasks ex-

hibited minimal variations in the most important features for inferring 
SEE scores and their subcategories. WavLM emerged as the strongest 
feature, achieving the highest accuracy, correlation, and lowest error 
across most target labels. Prosody, turn-taking patterns, BERT outputs, 
and histograms of action units (HAUs) followed in terms of performance. 
Notably, the easily extractable turn-taking feature achieved comparable 
results for predicting the final SEE score. Prosodic features also rival 
WavLM’s performance (no significant difference in SEE prediction) and 
even excelled in predicting specific subcategories of fluency and interac-

tion. This outcome might be due to WavLM encompassing both acoustic 
and linguistic features, which are typically emphasized in automatic 
speech recognition tasks. Similarly, BERT features, while significant, 
were less dominant than WavLM features were. Since BERT primarily 
represents the grammatical correctness of sentence structures, it per-

forms better in inferring accuracy. Finally, HAU was found to be the 
least effective feature for SEE score prediction, with an achieved accu-

racy of approximately 65%.

An analysis of the results in Table 4 revealed several findings con-

cerning the efficacy of the multimodal approach. Our multimodal ap-

proach incorporated prosodic, turn-taking, and HAU features. WavLM 
was excluded because of its negligible impact on SEE prediction com-

pared with prosodic features and its lack of interpretable descriptors, 
unlike the other features employed in our analysis. For the binary clas-

sification task aiming to predict the final SEE score, the combination 
of prosody, HAU, and turn-taking features yielded the most accurate 
results. However, in the regression task predicting the continuous SEE 
score value, excluding HAU resulted in marginally better performance, 
although this difference was not statistically significant (𝑝 > 0.05). In 
the multimodal approach, prosody and turn-taking features were gen-

erally shown to be sufficient for achieving optimal performance. Thus, 
the inclusion of only HAUs could significantly improve the prediction 
of the I4 subcategory (conversational cues), as evidenced by a 𝑝 value 
lower than 0.05.

An analysis of both unimodal and multimodal results revealed some 
interesting findings. The multimodal approach that used prosody and 
turn-taking features achieved the most accurate final SEE score predic-

tion. This was evident in both the classification (accuracy of approxi-

mately 83%) and regression tasks (𝜌: 0.681, RMSE: 0.333). While the 
unimodal WavLM model exhibited slightly lower performance, its lack 

of interpretability limits its usefulness in the context of understanding 
the SEE assessment.

5.3.2. Feature and sequence importance

To gain a deeper understanding of feature contributions and identify 
potential redundancies or synergies among modalities, we conducted a 
unimodal feature importance analysis using the importance gain unit in 
a gradient boosting method. By examining features within their respec-

tive modalities, we can better appreciate their individual significance 
and potential interactions. Additionally, unimodal models often provide 
a simpler and more interpretable framework than multimodal models 
do, facilitating a clearer understanding of the underlying factors influ-

encing spoken English proficiency.

Fig. 3 shows the feature importance according to the gain method 
in the regression task of estimating the SEE score using the LightGBM 
model. The gain method evaluates how much a feature influences the 
decision-making process in a tree. It assesses how well a feature sepa-

rates data points, aiming for either lower overall error (classification) 
or higher purity (homogeneity) within tree nodes.

Fig. 3a illustrates the significance of prosody features in predicting 
SEE scores. Prosody encompasses 103 features categorized into three 
subgroups: F0-based (indices 1–30), energy-based (indices 31–78), and 
duration-based (indices 79–103). The figure reveals that each prosody 
feature contributed to the prediction model’s efficacy. Notably, F0-based 
features, particularly those derived from the mean squared error of lin-

ear F0 estimation for voiced segments (indices 13–18), substantially im-

proved the model’s performance. Similarly, duration-based features, es-

pecially those associated with voiced segments and pauses, also yielded 
significant gains in the prediction process.

Fig. 3b highlights the importance of each HAU in estimating the SEE 
score. Action units (AUs) associated with lip movement emerged as the 
most significant features. Among these, AU 25 (lip part: depressor labii, 
relaxation of mentalis (AU 17), orbicularis oris) and AU 17 (chin raiser: 
mentalis) exhibited the greatest influence, with a gain exceeding 150 in 
feature importance. AU 45 (blink: relaxation of levator palpebrae and 
contraction of orbicularis oculi, pars palpebralis), which potentially in-

dicates changes in cognition load while speaking (Brych et al., 2021), 
also significantly increased. The remaining most influential AUs were 
found to be AU 20 (lip stretcher: risorius) and AU 15 (lip corner depres-

sor: depressor anguli oris (triangularis)), both of which are related to lip 
movement. Our findings align with nonverbal communication research, 
which indicates that eye and lip movements are associated with uncer-

tainty (Givens, 2002). In particular, the combination of AU 15 and AU 
17 corresponds to the verbal expression of hesitation phrases, such as “I 
do not know” (Ricci Bitti et al., 2014).
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Table 5
Experimental results using additional interviewer features. Δ denotes the improvement of accuracy in comparison to the prediction 
results obtained by the interviewee features only.

Feature
Target 
SEE (Δ) RangeAvg.(Δ) AccuracyAvg.(Δ) FluencyAvg.(Δ) InteractionAvg.(Δ) CoherenceAvg.(Δ)

WavLM 81.990 (0.006) 76.773 (-0.971) 73.126 (1.020) 72.010 (-5.849) 80.048 (-0.404) 81.490 (5.011) 
Prosody 81.760 (-0.290) 75.278 (-1.063) 71.034 (-0.446) 69.788 (-8.238) 80.158 (-0.767) 80.043 (4.293) 
BERT 77.580 (-1.940) 68.535 (-3.983) 69.418 (-3.016) 72.383 (-0.807) 71.578 (-4.656) 74.397 (5.867) 
HAU 68.760 (3.665) 64.108 (1.787) 62.978 (-1.555) 65.850 (2.190) 66.633 (0.469) 68.513 (7.945) 
Turn 82.350 (0.514) 75.933 (2.107) 71.302 (2.810) 70.028 (-6.301) 78.983 (-0.579) 80.390 (6.022)

Prosody-HAU 81.760 (-0.070) 75.338 (-1.688) 71.110 (-1.222) 70.010 (-2.298) 80.030 (0.267) 80.370 (0.103) 
Prosody-Turn 83.030 (0.370) 75.485 (-2.348) 72.166 (-0.820) 70.160 (-2.818) 80.645 (-0.295) 80.790 (-0.250)

HAU-Turn 81.240 (-0.220) 74.735 (0.440) 70.756 (0.556) 71.578 (0.650) 79.825 (0.508) 79.697 (0.423) 
Prosody-HAU-Turn 83.550 (0.370) 76.160 (-1.188) 72.138 (-0.700) 70.125 (-2.630) 80.828 (-0.300) 81.040 (0.220) 

Fig. 4. Sequence importance for estimating SEE scores via BERT, WavLM, and 
prosodic features.

Fig. 4 explores the importance of the utterance sequence for spo-

ken English proficiency estimation, analyzing three features, namely, 
BERT, WavLM, and prosody. The results revealed a clear trend, namely, 
the first utterance held the most significance in predicting spoken pro-

ficiency. This importance gradually diminished as the sequence pro-

gresses, although a slight peak was observed in the acoustic features 
(WavLM and prosody) toward the second last of the utterance. These 
findings align with psychology research suggesting that first impres-

sions play a substantial role in hiring decisions during job interviews 
(Bernieri, 2000).

5.3.3. The role of external factors (interviewer features and interview 
setting)

Interviewer behavior can significantly influence an interviewee’s 
performance. Studies have shown that first impressions formed by in-

terviewers can be lasting, potentially impacting how they evaluate a 
candidate throughout the interview process (Bernieri, 2000). Addition-

ally, interviewer communication style and questioning techniques can 
influence interviewee anxiety and self-disclosure levels (Jourard & Jaffe, 
1970; Little et al., 1976). For example, interviewers who use open-ended 
questions and active listening may encourage interviewees to speak 
more freely, potentially leading to a more accurate assessment of their 
skills and experiences. Conversely, interviewers who display impatience 
or interrupt frequently might create a stressful environment that hinders 
their performance.

In addition to assessing interviewee proficiency, this study explored 
the influence of interviewer behavior. The feature representation of in-

terviewer behavior was found to be equivalent to the features extracted 
for an interviewee, except for visual cues. Owing to the camera focusing 
solely on the interviewee, the visual features of the interviewer were not 
captured. Therefore, we analyzed interviewee behavior through visual 

Table 6
SEE prediction in macro F1 score (%) 
based on interview setting.

Gender 
Type Female Male All 
Remote 89.08 79.57 84.01 
In-Person 75.26 83.64 80.09 
All 79.59 83.22 81.73 

cues (as a proxy for interviewer features) while the interviewer spoke 
segments. The interviewees’ reactions obtained through visual cues can 
provide valuable insights into the dynamics of the interview while the 
interviewer is speaking. We employed a classification task to predict SEE 
scores and the average accuracy for aspects such as range, accuracy, flu-

ency, interaction, and coherence.

The impact of incorporating interviewer features on SEE score classi-

fication accuracy is presented in Table 5. HAU features from interviewer 
speech led to a significant 3.665% increase in SEE score classification 
accuracy. Interestingly, the greatest improvement was observed in the 
coherence aspect. This finding aligns with the observation that coher-

ence has the strongest correlation (𝜌 > 0.9) with SEE scores, suggesting 
that interviewer features significantly influence the coherence of the in-

terviewees’ responses.

We extended our analysis beyond interviewer features to explore 
interview setting prediction using a 5-fold cross-validation (Table 6). 
Without considering gender, the results indicated greater accuracy for 
models predicting SEE scores in remote sessions than in in-person set-

tings. However, different outputs were obtained when considering gen-

der. In remote sessions, the model predicted SEE scores for females to be 
nearly 10% higher than those for males. Conversely, the in-person set-

ting exhibited the opposite trend, with male SEE score predictions being 
8% higher than female predictions. These findings warrant further in-

vestigation into potential gender bias within the model’s predictions or 
differential difficulty in predicting SEE scores on the basis of the inter-

play between the interview setting and gender.

6. Discussion

This research contributes to the evolving field of educational tech-

nology and language assessment by enhancing the interpretability of 
spoken English evaluation (SEE) scores in practice.

6.1. Technology-enhanced language learning

The use of machine learning models to increase the interpretability 
of SEE scores aligns with the growing field of technology-enhanced lan-

guage learning. Moving beyond traditional metrics, this research focuses 
on a broader range of speaking skills, including fluency, accuracy, coher-

ence, and discourse management. By analyzing data from both remote 
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Table 7
Illustrative Example: Prompt and AI-generated Feedback for Comprehensive Spoken English Evaluation. 
Feedback generated using the Gemini 1.5 flash model.

Prompt Feedback 
Generate personalized feedback on a speaker’s English fluency 
based on the following scores:

Accent: 4 
Tempo and Pausing: 3 
Intonation and Fluidity: 2 
Fluency is defined as the ability to speak smoothly and naturally, 
encompassing factors such as the following:

Smoothness: Minimal hesitations, false starts, and self-corrections. 
Tempo: A natural and even flow of speech with appropriate pauses 
and hesitation. 
Rate: Speaking at a comfortable and appropriate speed. 
The feedback should be as follows:

Constructive and encouraging: Focus on areas of strength and areas 
for improvement. 
Personalized: Tailor the feedback to the specific scores provided. 
Actionable: Provide specific suggestions for how the speaker can 
improve their fluency. 

Your pronunciation is generally clear, 
but there are some areas where your 
accent could be more natural. 
You tend to pause slightly more 
frequently than native speakers, 
which can sometimes disrupt the 
flow of your speech. Working on 
speaking more smoothly and naturally, 
and paying attention to intonation 
patterns, will significantly improve your 
overall fluency. 

and in-person settings, we aim to develop a more robust and general-

izable model. This research demonstrates the potential of technology 
to significantly support and improve spoken language assessment prac-

tices, providing valuable information for both educators and learners.

6.2. Learner-centered approach

The proposed development of an automatic system for predicting 
SEE scores, leveraging model insights and the impact of external fac-

tors, directly supports a learner-centered approach to language educa-

tion. This system has the potential to provide personalized feedback to 
both interviewees and interviewers, enabling them to identify areas for 
improvement and enhancing their language learning and teaching prac-

tices.

To facilitate this, we propose leveraging a large language model to 
generate constructive feedback for interviewees. This model receives 
detailed information about the predicted SEE scores as input. Table 7
presents an example of a prompt constructed on the basis of predicted 
SEE scores related to fluency and the corresponding constructive and 
actionable feedback provided to the interviewees. The feedback com-

ments are generated based on the inference results of the proposed 
interpretable model. Our model successfully minimized the generation 
of false or misleading information, improving the reliability and accu-

racy of the LLM-generated feedback.

The findings of this study have broad implications, offering diverse 
applications for stakeholders across various fields, as follows:

• Researchers: The proposed multi-output learning approach pro-

vides a framework for developing more transparent and inter-

pretable models in language assessment. This allows researchers 
to analyze the factors influencing spoken English proficiency, fa-

cilitating the development of more valuable assessment tools and 
pedagogical strategies.

• Teachers: By understanding the specific features contributing to 
SEE scores (e.g., fluency, range, coherence), teachers can tailor their 
instruction to address individual student needs. The identified im-

pact of interviewer behavior and setting also highlights the impor-

tance of creating supportive learning environments.

• Students: The development of a feedback system based on the in-

terpretable model and external factor analysis will provide students 
with actionable insights into their spoken English performance. This 
personalized feedback can help them identify areas for improvement 
and develop more effective learning strategies.

• System Designers: The findings offer valuable guidance for design-

ing automated spoken English assessment systems that prioritize 
both accuracy and interpretability. Incorporating multimodal cues 
and considering the impact of external factors can lead to more ro-

bust and reliable assessment tools.

7. Conclusion and future work

This research introduces a novel approach to enhancing the inter-

pretability of the SEE process by leveraging multioutput learning mod-

els (RQ1). Our method improves interpretability using multiple indices 
related to SEE assessment while maintaining accuracy comparable to 
that of state-of-the-art black-box models. We also successfully identify 
features that strongly correlate with the overall SEE score and its con-

stituent aspects, such as fluency, range, and coherence (RQ2). Intrigu-

ingly, further analysis reveals a quantifiable impact of external factors, 
namely, interviewer behavior and the interview setting, on intervie-

wees’ spoken proficiency (RQ3). Our findings suggest that incorporating 
interviewer characteristics into future models could be beneficial, par-

ticularly for inferring coherence.

In terms of practical implications, our proposed system can be inte-

grated into existing language learning platforms to provide personalized 
feedback to learners. This feedback highlights areas of strength and 
weakness in their spoken English. Such information can subsequently 
empower learners to track their progress and tailor their learning strate-

gies accordingly.

Although this work demonstrates the potential of the proposed ap-

proach, we acknowledged some limitations of our research. The pro-

posed approach, while innovative, may present certain challenges in 
terms of inheritability. The complexity of the multimodal data pro-

cessing pipeline, involving audio, video, and text streams, may require 
significant computational resources and expertise. Data cleaning, which 
is a crucial step, can be particularly challenging, requiring careful han-

dling of issues such as noise in audio recordings, inconsistencies in video 
quality, and inaccuracies in transcriptions.

Furthermore, while this study primarily evaluates system perfor-

mance, future research will investigate its real-world impact by exam-

ining its effectiveness within actual educational settings, specifically 
focusing on its influence on student learning outcomes.

Addressing potential biases within the dataset, such as proficiency 
bias and interview setting bias, is crucial to ensuring the fairness and 
generalizability of the model. Future research will address bias mitiga-

Computers and Education: Artiϧcial Intelligence 8 (2025) 100386 

10 



C.O. Mawalim, C.W. Leong, G. Sivan et al. 

tion strategies and perform a comprehensive analysis of demographic 
aspects and interview settings to improve the robustness of the model 
and ensure equitable results.

Statements on open data

This study received approval from Vericant’s compliance committee. 
The participants provided their written informed consent prior to par-

ticipation, and their privacy rights were strictly observed. Pending final 
approval, anonymized data supporting the findings of this study will be 
made available upon reasonable request to the corresponding author. 
To ensure responsible data sharing and maintain ethical considerations, 
further consultation may be required on data access and potential col-

laborations. Data availability will be subject to the following conditions:

• Confidentiality and privacy: All identifying information will be 
removed from the data before release to ensure the anonymity of 
the participants.

• Data use restrictions: Data may only be used for research purposes 
consistent with the original study objectives.

• Data citation: Researchers using the data must appropriately cite 
the original publication.
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quired to outline the terms of data access and use.
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Appendix A. Multi-comparison pairwise tests on classification task

Table A.1

Bonferroni-adjusted pairwise tests on unimodal features to determine significant differences between groups.

Target SEE R1 R2 R3 R4 A1 A2 A3 A4 A5 F1 F2 F3 F4 I1 I2 I3 I4 C1 C2 C3 
Pair BERT 
WavLM + *** ** *** *** + + *** + + + + *** *** *** *** + + *** *** *** 
Prosody + *** + *** + + + + + + + + *** *** *** *** + *** *** *** *** 
HAU *** *** *** *** *** + *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** 
Turn + + + + + ** + ** *** ** + + + *** *** *** + + *** *** **

Pair HAU 
WavLM *** *** *** *** *** + *** *** *** + *** *** *** *** *** *** *** *** *** *** *** 
Prosody *** *** *** *** *** + *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** 
Turn *** *** *** *** *** *** *** *** + + *** *** *** *** *** *** *** *** *** *** ***

Pair Prosody 
WavLM + + + + + + + + + + + + + + + + + ** + + + 
Turn + ** + + + + + *** + ** + + ** + + + + ** + + +

Pair Turn 
WavLM + ** ** ** *** *** + *** ** + + + ** + + + + + + + + 

Note: ‘***’: 𝑝 < 0.01, ‘**’: 𝑝 < 0.05, ‘ + ’: 𝑝≥ 0.05.

Table A.2

Bonferroni-adjusted pairwise tests on multimodal features to determine significant differences between groups.

Target SEE R1 R2 R3 R4 A1 A2 A3 A4 A5 F1 F2 F3 F4 I1 I2 I3 I4 C1 C2 C3 
Pair HAU-Turn 
Prosody-HAU + + ** + + + + ** + + + + + + + + + ** ** + + 
Prosody-Turn + + ** ** + + + ** + + + + + + + + + ** *** + ** 
Prosody-HAU-Turn + ** ** + + + + ** + + + + + + + + + ** ** + +

Pair Prosody-HAU 
Prosody-Turn + + + + + + + + + + + + + + + + + + + + + 
Prosody-HAU-Turn + + + + + + + + + + + + + + + + + + + + +

Pair Prosody-HAU-Turn 
Prosody-Turn + + + + + + + + + + + + + + + + + + + + + 

Note: ‘***’: 𝑝 < 0.01, ‘**’: 𝑝 < 0.05, ‘ + ’: 𝑝≥ 0.05.
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Appendix B. Multi-comparison pairwise tests on regression task

Table B.1

Bonferroni-adjusted pairwise tests on unimodal features to determine significant differences between groups.

Target SEE R1 R2 R3 R4 A1 A2 A3 A4 A5 F1 F2 F3 F4 I1 I2 I3 I4 C1 C2 C3 
Pair BERT 
WavLM ** + *** *** *** + + + + + + *** + *** *** *** + ** *** *** *** 
Prosody + + + + + *** ** + + + + *** + *** + *** + + + + + 
HAU *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** 
Turn + + ** + + *** *** *** *** ** + ** + *** *** *** + ** + + +

Pair HAU 
WavLM *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** 
Prosody *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** 
Turn *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***

Pair Prosody 
WavLM ** + + *** ** *** ** + + ** + + + + + + + + ** + + 
Turn + + *** + + + + ** *** + + + + + + + + + + + +

Pair Turn 
WavLM + + *** *** *** *** *** *** *** *** *** + + + + + + + ** + + 

Note: ‘***’: 𝑝 < 0.01, ‘**’: 𝑝 < 0.05, ‘ + ’: 𝑝≥ 0.05.

Table B.2

Bonferroni-adjusted pairwise tests on multimodal features to determine significant differences between groups.

Target SEE R1 R2 R3 R4 A1 A2 A3 A4 A5 F1 F2 F3 F4 I1 I2 I3 I4 C1 C2 C3 
Pair HAU-Turn 
Prosody-HAU + + + + + + + + + + + + + + + + *** + + + + 
Prosody-HAU-Turn + + + + ** *** ** ** + + + + + + + + + + + + + 
Prosody-Turn + + + + ** *** + ** + + + + + + + + + + + + +

Pair Prosody-HAU 
Prosody-HAU-Turn ** *** + + + *** + + + + + ** + ** ** ** *** + ** ** + 
Prosody-Turn *** *** + + + *** + + + + + ** + ** ** ** *** ** ** ** +

Pair Prosody-HAU-Turn 
Prosody-Turn + + + + + + + + + + + + + + + + + + + + + 

Note: ‘***’: 𝑝 < 0.01, ‘**’: 𝑝 < 0.05, ‘ + ’: 𝑝≥ 0.05.
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