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ABSTRACT As the global issue of hearing loss becomes increasingly severe, developing effective speech
intelligibility prediction methods is crucial for improving the performance of hearing aids. However, current
methods struggle in noisy environments and overlook individual differences in hearing loss between ears,
which impacts prediction accuracy. Therefore, this study proposes a non-intrusive speech intelligibility
prediction method that incorporates the binaural processing for hearing loss. The proposed method simulates
the multi-stage binaural processing of the outer, middle, and inner ear and integrates binaural cues through an
equalization-cancellation model to mitigate masking effects in noisy environments. Key features extracted
from speech signals serve as inputs for a hybrid speech intelligibility model combining long short-term
memory (LSTM) and light gradient boosting machine (LightGBM) models. The proposed method captures
the critical features of speech signals, especially in challenging environments and for different types of
hearing loss. Experimental results show that, compared to the baseline system of the second Clarity
Prediction Challenge (CPC2) dataset, the proposed method achieves an 8.3% reduction in root mean squared
error (RMSE). Notably, the proposed method reduces RMSE by 12.8% when predicting inconsistent hearing
loss compared to listeners with consistent hearing levels, confirming the potential of combining hearing loss
modeling with binaural processing.

INDEX TERMS Hearing loss, speech intelligibility prediction, binaural processing, equalization-
cancellation model.

I. INTRODUCTION Studies show that individuals with hearing loss face a 52%

Hearing loss is a growing public health challenge globally.
According to the World Hearing Report, by 2050, nearly
2.5 billion people will experience hearing loss, with at least
700 million requiring rehabilitation services [1], [2]. This
condition, especially among older adults, leads to commu-
nication difficulties, isolation, and frustration, significantly
impacting quality of life [3], [4]. Economically, hearing loss
increases medical costs related to mental health and cognitive
impairment, and leads to an earlier exit from the labor market,
reduced income, and greater dependence on social services.

The associate editor coordinating the review of this manuscript and
approving it for publication was Akansha Singh.

higher risk of social isolation, a 47% greater likelihood of
depression, and an unemployment rate twice that of people
with normal hearing [5]. Hence, hearing health is a critical
issue in the medical field and a key factor influencing social
well-being, demanding urgent global efforts.

As a wearable and easy-to-use device, hearing aids can
effectively improve speech intelligibility for individuals
with hearing loss [6], [7]. Indeed, a study comparing
hearing aids with different technical designs found that
both advanced and basic models could significantly improve
speech understanding in daily life [8], suggesting that even
more affordable hearing aids can substantially benefit users.
However, a noticeable gap in global hearing aid services still

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

VOLUME 13, 2025

For more information, see https://creativecommons.org/licenses/by/4.0/ 25817


https://orcid.org/0009-0007-5596-0999
https://orcid.org/0000-0001-9853-8893
https://orcid.org/0000-0002-6605-2052

IEEE Access

X. Zhou et al.: Speech Intelligibility Prediction Using Binaural Processing for Hearing Loss

exists, particularly in low-income countries, where only 17%
of those in need of hearing aids use them [1]. The gap is
not only due to the high cost of advanced hearing aids but
also to the lack of knowledge about hearing tests and the
public’s insufficient awareness of the benefits of hearing aids,
particularly their role in improving speech intelligibility.

Traditionally, the assessment of speech intelligibility relies
on subjective hearing tests, which are both time-consuming
and resource-intensive. With the development of machine
learning technologies, researchers have begun exploring
intrusive and non-intrusive methods for objectively predicting
speech intelligibility. These methods learn how the auditory
system functions and capture key speech features to predict
speech intelligibility. For example, Andersen et al. proposed
a non-intrusive speech intelligibility prediction model based
on a convolutional neural network (CNN), which predicted
speech intelligibility by analyzing speech signals [9], [10].

However, subjective hearing tests assess speech intel-
ligibility by relying on the brain’s ability to balance
spatial auditory cues, integrating both binaural and spectral
cues [11], [12], [13]. Binaural cues, including interaural time
differences (ITD) and interaural level differences (ILD), play
a crucial role in horizontal localization (azimuth). In contrast,
spectral cues are generated by the frequency-filtering effects
of the outer ear (pinna) and provide essential information
for vertical localization (elevation). This combined spatial
information allows for more precise and reliable localization,
especially in real-world scenarios.

Both binaural and spectral cues enhance speech intelli-
gibility. Research shows that binaural hearing aids improve
speech recognition in noisy environments, particularly when
sounds and noise come from different directions [14].
However, for hearing aids, horizontal localization tends to be
more accurate [15]. This difference arises because the human
ear and brain have robust mechanisms for processing time
and phase differences for horizontal localization. In contrast,
vertical localization lacks similar physiological signals and
processing pathways, reducing accuracy. Consequently, this
study emphasizes the importance of binaural cues, specifi-
cally ITD and ILD, as they enhance sound localization and
noise suppression and thereby provide a natural auditory
experience [16]. Specifically, the roles of binaural cues
include the following aspects:

o Head Shadow Effect: When noise arrives from different
directions, the head causes diffraction of sound waves,
generating ITD and ILD. These differences allow lis-
teners to accurately localize sound sources and enhance
speech understanding in noisy environments.

« Effect of Noise Azimuth: The direction of noise sources
affects speech intelligibility. When noise comes from
the side (e.g., at a 90-degree azimuth), binaural hearing
can provide a greater signal-to-noise ratio (SNR) gain
than monaural hearing. This gain stems from the ILD
effect on the ear with better high-frequency hearing, with
increases ranging from 0 to over 7 dB in individuals with
normal hearing.
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o Combined Effect of ITD and ILD: When noise signals
contain ITD and ILD, speech intelligibility gains range
from 2 to 2.5 dB across all listener groups. Studies
have shown that binaural cues can enhance speech
intelligibility in individuals with hearing loss [16].

To further explore how hearing loss affects speech percep-
tion, auditory spectrograms can be utilized to visualize the
impact of different types and degrees of hearing impairment
on the frequency content and energy of speech signals.
In particular, gammatone filterbank (GTFB) spectrograms,
which model the human auditory filterbank, provide detailed
insights into how hearing loss affects specific frequency
channels [17]. By simulating hearing loss using audiograms
and analyzing the resulting GTFB spectrograms, we can
better comprehend the challenges individuals face and
develop more effective hearing aid algorithms.

Considering an objective speech intelligibility prediction
model for hearing aids, this study introduces a model
that simulates hearing loss in both ears using audiograms.
Binaural processing is incorporated through the equalization-
cancellation (EC) model to eliminate masking effects and
improve speech intelligibility [18]. Advanced feature extrac-
tion methods are employed, with long short-term memory
(LSTM) and light gradient boosting machine (LightGBM)
models combined in a hybrid approach for final predictions.

The proposed method is trained on the second Clarity Pre-
diction Challenge (CPC2) dataset, which includes processed
signals from hearing aids and listener information such as
age, gender, and audiograms [19]. Each listener’s audiogram
is stored as a frequency-level pair for both ears, and all
listeners have experience with binaural hearing aids. The
evaluation set consists of listeners who do not overlap with
the training set, verifying the model’s generalization ability to
unseen listeners. The final prediction is evaluated using root
mean squared error (RMSE), with lower values indicating a
better prediction performance.

In summary, the main contributions of this work are as
follows:

« We propose a speech intelligibility prediction method
that addresses the challenge of combining binaural
processing with hearing loss simulations. This approach
captures the ability to process speech information across
different levels of hearing loss in both ears.

o The proposed method demonstrates strong generaliza-
tion capabilities for predicting speech intelligibility in
unknown and noisy environments.

Section II of this paper reviews related work. In Section 111,
we introduce the proposed method with binaural process-
ing for hearing loss, and in Section IV, we describe
the dataset, experimental setup, and evaluation metrics.
Section V provides an overall evaluation of the proposed
method’s effectiveness in predicting speech intelligibility.
In Section VI, we analyze the impact of different types
and severities of hearing loss, demonstrating the advantages
of the proposed method. Section VII examines the impact
of datasets in unknown noisy environments with varying
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TABLE 1. Evolution of speech intelligibility prediction models.

Strengths

Limitations

Method Type Description

Articulation index [20] Intrusive  SNR-based speech intelligibility pre-
diction, originally for telephone lines.

Speech intelligibility in- Intrusive = Extended articulation index model

dex (SII) [21] with frequency importance functions
(FIFs) and masking effects for noisy
environments.

Hearing aid speech per- Intrusive  Auditory model analyzing envelope

ception index (HASPI) and fine structure for speech intelli-

[22] gibility prediction.

Modified binaural short- Intrusive  Integrates left and right signals using

time objective intelligi- the equalization-cancellation stage to

bility (MBSTOI) [23] optimize short-time objective intelli-
gibility (STOI).

Non-intrusive methods Non- Machine learning-based methods pre-

[24]

intrusive

dicting speech intelligibility without

‘Works well in stationary noise.

Better than articulation index
in varied conditions.

Excellent in noisy/nonlinear
conditions (e.g., frequency
compression).

Improves binaural speech in-
telligibility prediction, effec-
tive in simple environments.

Flexible, practical in noisy en-
vironments.

Poor in complex noise, sensi-
tive to distortions.

Struggles with non-linearity,
assumes idealized conditions.

Requires clean reference sig-
nal, high computational cost.

Requires clean reference sig-
nal, high computational cost.

Generally less accurate in con-
trolled conditions.

clean reference signal.

interference sources. Finally, we conclude in Section VIII
with future directions.

Il. RELATED WORK

A. EVOLUTION OF SPEECH INTELLIGIBILITY PREDICTION
MODELS

Although traditional intrusive methods, such as the articu-
lation index and speech intelligibility index (SII), provide
a solid theoretical and practical foundation, they face
limitations in handling complex noise and nonlinearities.
These methods, detailed in Table 1, are less accurate in
controlled environments but offer greater flexibility and
practicality for real-world applications. As shown in the
table, the adaptability of non-intrusive methods has become
important in speech intelligibility prediction.

Models such as the articulation index and SII have been
mentioned as methods for speech intelligibility prediction
in hearing aids [21], [25], [26]. The articulation index
was initially proposed to predict the effects of telephone
line variations on speech comprehension. However, it has
since been used to evaluate the performance of speech
communication systems [20]. In predicting speech intelligi-
bility, the articulation index is a weighted score representing
an effective proportion of the speech signal, which is
available to the listener under the given speech channel
and noise conditions. The articulation index calculates the
SNR contribution of speech signals in different frequency
bands by analyzing acoustic measurements. However, it has
limited applicability in dealing with complex non-stationary
noise, such as intermittent noise. In addition, it is sen-
sitive to frequency and amplitude distortions in speech
signals.

To address the limitations of the articulation index, the
SIT was proposed as an extended version, providing a more
flexible and general framework for calculating the availability
of speech information [21]. SII inherits the basic theory
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of the articulation index, positing that speech intelligibility
is directly related to the proportion of audible speech
information. However, SII introduces more variables and
correction factors in its calculation process, such as frequency
importance functions, upward spread of masking effects, and
the influence of high sound pressure levels.

Although the articulation index and SII provide theoretical
foundations and practical tools for speech intelligibility pre-
diction, they have limitations in practical applications [27].
Studies have shown that while they can predict speech
recognition scores through empirical transfer functions, they
do not directly measure speech intelligibility; instead, they
reflect the audibility and availability of speech signals under
specific conditions. This means that the articulation index
and SII models rely on idealized acoustic conditions and
cannot adequately cope with noisy environments or nonlinear
distortions. In particular, when applied to the prediction
evaluation of hearing aids, their accuracy may be affected by
different noise [24].

To address the limitations of traditional models,
researchers have developed a series of prediction tools in
recent years, aiming to overcome the shortcomings of these
conventional methods. These tools can be divided into two
categories: intrusive and non-intrusive methods. Intrusive
methods require a clean reference signal, while non-intrusive
methods do not. Intrusive methods have the advantage of
being able to accurately compare the difference between the
clean reference signal and the test signal, especially when
dealing with complex noise and nonlinear distortions.

For example, intrusive methods such as the hearing aid
speech perception index (HASPI) utilize processing based on
the auditory periphery model to better simulate the effects
of hearing impairments [22], [28], [29]. These methods
perform well under high SNR conditions and can adapt
to the complex signal variations introduced during hearing
aid processing. In particular, HASPI has been shown to
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provide excellent predictions of speech intelligibility under
challenging conditions such as frequency compression and
noise suppression. The better ear HASPI (be-HASPI) can
simulate the auditory changes in both normal hearing
and hearing loss [30]. This model compares the temporal
amplitude envelope and temporal fine structures of degraded
signals with unprocessed clean reference signals to accurately
simulate the effects of hearing loss on speech signals [28].

The short-time objective intelligibility (STOI) measure is
utilized to predict speech intelligibility by assessing the cor-
relation between short-time segments of clean and degraded
signals. The modified binaural STOI (MBSTOI) measure
uses a modified equalization cancellation stage to optimize
speech intelligibility predictions [9], [23]. In MBSTOI, left
and right ear signals are processed through an EC stage,
which aligns and cancels interfering noise by maximizing
the correlation between signals. This approach calculates
intelligibility by adjusting parameters for each time frame and
frequency band, achieving an optimal correlation between the
clean and improved speech signals. However, despite the
high precision of intrusive methods, they also have some
notable limitations. First, these methods require a clean
reference signal, which is often difficult to obtain in practical
operations. Second, in real-world hearing aid applications,
the process of acquiring and synchronizing clean reference
signals may be limited by environmental factors and device
performance.

To address the limitations of intrusive methods, researchers
have explored non-intrusive methods. These methods use
advanced signal processing techniques and machine learning
algorithms, enabling the models to capture critical infor-
mation directly from the output signal without requiring
a clean reference signal [24]. This mitigates the need for
synchronization between reference and target signals, making
non-intrusive models particularly advantageous in variable
acoustic environments and complex noise conditions.

For example, researchers have developed a non-intrusive
speech intelligibility prediction method that utilizes
hierarchical and temporal features in noise-robust models to
address the limitations of traditional models. This method
utilizes a pre-trained model such as the whisper and
waveform language model (WavLM) to extract speech
signal features and predict intelligibility [31]. It also uses a
transformer model to process the obtained temporal features
and incorporates audiogram information from listeners to
improve the prediction. These processing steps enable the
model to separate speech signals in noisy environments.

B. INTEGRATION OF NON-INTRUSIVE SPEECH
INTELLIGIBILITY PREDICTION METHODS WITH THE
AUDITORY SYSTEM

As shown in Fig. 1, our motivation for this study is twofold:
first, to clarify the communication barriers caused by hearing
loss; second, to create a binaural signal processing model
designed for hearing aids. The figure illustrates the challenges
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Hearing loss and communication barriers ]

Sound Improved

Challenges in predicting speech intelligibility
with hearing aids

Binaural signal processing and brain
optimization

Noise

FIGURE 1. A holistic approach to enhancing speech intelligibility for
hearing aids: from hearing aids to binaural signal processing.

associated with current hearing aid technology and highlights
points of inspiration for combining prediction methods
with binaural signal processing. In this section, we discuss
combining the auditory system capabilities of the human ear
with advanced machine learning techniques to predict speech
intelligibility even in noisy environments.

The global lack of hearing health knowledge has left
many people without the help they need. At the same
time, research by Cox et al. has highlighted that while
both new and experienced users believe hearing aids greatly
improve communication in daily life, there are still issues
related to overall user satisfaction [8]. Therefore, in addition
to technological advancements, it is equally important to
ensure that individuals with hearing loss trust and actively
use hearing aids. Despite existing users believing that
hearing aids greatly improve communication, many people
remain skeptical about their effectiveness, leading to lower
usage rates than expected. This is why it is important to
develop objective prediction methods that help individuals
with hearing loss predict speech intelligibility in unknown
environments.
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In 1991, researchers conducted experiments comparing the
subjective and objective speech clarity measurements of older
adults with hearing loss [32], [33]. Although there was a
clear correlation between the two, subjective scores tended
to be lower than objective scores. This suggests that older
individuals may underestimate their speech comprehension
abilities, thereby leading them to question the effectiveness of
hearing aids. Additionally, over-reliance on subjective feed-
back during fitting and adjustment may result in inaccurate
settings that fail to fully utilize the device’s capabilities.
Therefore, combining subjective and objective measurement
methods during the fitting process is critical to ensure optimal
hearing compensation for older adults with hearing loss [34].

Non-intrusive speech intelligibility prediction methods are
practical in assessing speech intelligibility without needing
a clean reference signal [35]. However, these non-intrusive
methods still face many challenges when dealing with
noisy environments and different types of hearing loss.
For example, they ignore the specific needs of auditory
systems, so individual differences in hearing loss patients
are not adequately considered [36], [37]. The human ear
can analyze and understand sound in various environments,
and its mechanism is very complex and delicate [38],
[39]. Non-intrusive methods can only analyze the external
characteristics of signals, and it is difficult to deeply simulate
the process of the auditory system in processing speech
signals. Due to the lack of simulation of the internal
mechanisms, the prediction ability of these methods in
high-noise environments or complex hearing loss situations
is limited.

Combining binaural signal processing with non-intrusive
methods considers the link between objective and subjective
prediction methods. Incorporating hierarchical processing
of the ear and neural signal analysis into these objective
prediction models is intended to mimic the processing of
signals by the auditory system of an individual with hearing
loss. This treatment is also useful for different types of
hearing loss, where we can adapt the model to an individual’s
unique hearing characteristics. By considering prediction
models that incorporate the auditory system, we aim to make
the model work better in noisy environments and better
understand how individuals with hearing loss experience
sound in noisy environments.

lll. PROPOSED METHOD

We propose a non-intrusive speech intelligibility prediction
method to enhance prediction accuracy for hearing aids,
as shown in Fig. 2. In this section, we present a comprehen-
sive overview of the proposed method.

A. BINAURAL HEARING LOSS SIMULATION USING THE
MSBG MODEL

This study utilizes the Cambridge Auditory Group
Moore/Stone/Baer/Glasberg (MSBG) hearing loss model
based on Nejime’s research, which plays a crucial role in
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adjusting speech signals to reflect the anticipated hearing loss
effects [40]. The model processes stereo speech signals and
requires audiograms representing the hearing thresholds of
both ears. Audiograms provide essential frequency-specific
information on hearing sensitivity, allowing the model to
replicate the listener’s auditory experience under various
hearing loss conditions. By adjusting the signal processing
parameters, the model simulates the effects of different
degrees of hearing loss (e.g., mild, moderate, severe) on
the perceived sound quality. This model simulates how
individuals with hearing loss experience audio, especially in
speech intelligibility, where the degradation of sound clarity
often hinders effective communication. The model is suited to
simulating hearing aids and other assistive devices for hearing
loss.

1) OUTER AND MIDDLE EAR PROCESSING

The initial stage of the model involves simulating the effects
of the outer and middle ear. The outer ear, also known as the
pinna, plays a crucial role in spatial hearing by emphasizing
higher frequencies, which helps in sound localization. The
middle ear, on the other hand, performs the essential function
of impedance matching between the air-filled ear canal
and the fluid-filled cochlea, ensuring efficient sound energy
transfer.

The model applies filters that replicate the acoustic
transfer from the free field to the eardrum and through
the middle ear. These filters are designed to reflect the
natural physical properties of the human auditory system. The
processing is independent of audiogram data and simulates
the response of the outer and middle ear to sound. The outer
ear emphasizes higher frequencies, which are essential for
spatial hearing [41]. The middle ear, on the other hand,
acts as an impedance match, ensuring that sound waves
are adequately transmitted from the air-filled ear canal to
the cochlea. The signal is thus attenuated or amplified
appropriately before reaching the cochlea, which ensures that
the higher frequencies (important for consonant recognition)
are preserved or enhanced [41]. This processing stage ensures
that the signal entering the cochlea reflects the natural hearing
experience as accurately as possible before the hearing loss is
simulated.

2) AUDIOGRAM SELECTION AND ITS IMPACT ON HEARING
LOSS SIMULATION

The MSBG model utilizes audiograms to define hearing
thresholds at various frequencies for each ear. These
audiograms are crucial for tailoring the hearing loss sim-
ulation to individuals, as they provide frequency-specific
information about hearing sensitivity. Audiograms plot the
hearing threshold levels (typically measured in hearing
level) against the frequency spectrum, ranging from low to
high frequencies. In this study, audiograms were selected
based on the severity of hearing loss (e.g., mild, moderate,
severe) and were applied to both ears independently. Each

25821



IEEE Access

X. Zhou et al.: Speech Intelligibility Prediction Using Binaural Processing for Hearing Loss

aring level (dB)

Severe

Outer and middle
ear filter

— Lencor

Frequency (H2)

Audiogram (L)

e

fearing level (dB)

H

~

~

Cochlear filtering

Inverse \

equal-loudness
contour (ELC)
correction filter

Spectral Gammatone
smearing filterbank

N [/

Cochlear filtering

"
N
.

Spectral Gammatone Inverse
smearing filterbank equal-loudness
contour (ELC)
correction filter
|
|
— —)

requency (Hz)
Audiogram (R) [ Profound ]
W = Outer and middle
ear filter K
4 ) / N
’ > Binaural Binaural . Speech Speech
. . Signal Feature . N, . J,
. ‘ hearing loss hearing . . intelligibility intelligibility
== g 3 , : reconstruction extraction
N /—> simulation . integration model score
T ./

Improved SPIN
(Hearing aids
system output)

Input features
I

Equalization-Cancellation model

v V,

—

LSTM layer ] Flatten

LightGBM

;

—

Dense layer

Flatten ]
Tree boosting

l

— Binzlural ;ues —
o 5 To,
3 Time & level ___E _”E

—— jitters —> —>
g g
= =
< =
i =
= g
£ :
= Q

—>| Time & level —>

5 jitters

[Predictiou (LightGBM)}

I
2

| ‘Weighted combination |

[ Prediction (LSTM) |

Final prediction

FIGURE 2. Block diagram of proposed method. (L) and (R) respectively denote left and right ear signals. SPIN represents speech in noise.

audiogram serves as a frequency-dependent attenuation map
that determines how the audio signal is processed through the
model.

3) COCHLEAR FILTERING AND HEARING LOSS SIMULATION
The cochlea plays a critical role in hearing by converting
sound waves into electrical signals that the brain can interpret.
In a healthy ear, the cochlea functions with high frequency
selectivity, allowing individuals to distinguish between
closely spaced frequencies. However, damage to the cochlea,
such as through aging, noise exposure, or other factors,
has several detrimental effects on hearing. These effects
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include increased hearing threshold, loudness recruitment,
and reduced frequency selectivity, all of which are simulated
in the MSBG hearing loss model.

a: INCREASED HEARING THRESHOLD

When the cochlea is damaged or auditory nerves are
compromised, the hearing threshold increases, meaning that
softer sounds become inaudible unless amplified. This is
a common effect of sensorineural hearing loss, where the
ability to perceive soft sounds is significantly diminished.
In the MSBG model, this effect is simulated by applying
frequency-dependent attenuation to the audio signal based on
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the audiogram. The audiogram provides hearing thresholds
at different frequencies, and the model attenuates signals
according to the severity of hearing loss in each frequency
band. For example, mild hearing loss primarily affects high
frequencies, whereas severe hearing loss may impact a broad
range of frequencies, making speech sounds imperceptible,
especially high-frequency consonants.

b: LOUDNESS RECRUITMENT

Another important aspect of cochlear damage is loudness
enhancement, in which a person with hearing loss may feel
that sounds become abnormally loud once they exceed a
certain threshold. In a healthy cochlea, outer hair cells help
modulate the intensity of incoming sounds, but the dynamic
range is reduced with hearing loss. The MSBG model
simulates this effect by applying expansive nonlinearity
to the audio signal. In this way, once a sound surpasses
the hearing threshold (as defined by the audiogram), the
perceived loudness grows rapidly, reflecting the experience
of individuals with loudness recruitment. This phenomenon
can cause discomfort as certain sounds are perceived as
uncomfortably loud, even at moderate volumes.

¢: REDUCED FREQUENCY SELECTIVITY

Frequency selectivity refers to the cochlea’s ability to
distinguish between sounds that are close in frequency.
Hearing loss, particularly in the high frequencies, reduces the
cochlea’s frequency selectivity. This is especially problematic
for speech understanding, as it becomes difficult to differen-
tiate between speech sounds like ““s”” and ““sh.” In the MSBG
model, this effect is simulated by broadening the Equivalent
Rectangular Bandwidth (ERB) of the cochlear filters [42].
For individuals with hearing loss, the ERB is typically
widened, reducing the cochlea’s ability to resolve different
frequencies finely. The model reflects this broadening by
adjusting the filterbank parameters, making it more challeng-
ing to separate sounds that are close in frequency, thereby
simulating the decreased ability to discriminate speech in
noisy environments.

Together, these processes-increased hearing threshold,
loudness recruitment, and reduced frequency selectivity-
ensure that the MSBG model provides a realistic simulation
of hearing loss. The model’s ability to adjust the speech signal
based on the listener’s audiogram makes it a powerful tool
for understanding how different degrees of hearing loss affect
speech perception and the overall auditory experience.

B. BINAURAL HEARING AND THE EC MODEL FOR
SPEECH INTELLIGIBILITY

1) THE EC MODEL AND BINAURAL CUES PROCESSING

The EC model, developed by Wan [18], utilizes binaural
cues to enhance the target SNR. It processes left and
right ear signals separately across frequency bands and
dynamically adjusts binaural cues through modulation of
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TABLE 2. Symbols and their corresponding meanings in the EC model.

Symbol Description

U(i,j) Time-frequency unit in the i-th frequency channel and
J-th time frame

To(i,]) Optimal interaural time difference (ITD) for unit
U(i.J)

o (i, )) Optimal interaural level difference (ILD) for unit
U(iJ)

pij(T) Normalized cross-correlation function for left and
right ear signals

Ent, Masker energy for the left ear in unit U (i, /)

ENg, Masker energy for the right ear in unit U (i, )

Li(t) Jittered waveform for the left ear in the i-th frequency
channel

Ri(1) Jittered waveform for the right ear in the i-th fre-
quency channel

Wi(t) Rectangular window function for the j-th time frame

wi Angular frequency corresponding to the i-th fre-

quency channel

ITD and ILD [18], [43]. Binaural hearing plays a critical
role in noisy environments by allowing listeners to localize
sound sources and improve speech intelligibility, especially
in the presence of background noise. The EC model mimics
the brain’s processing of these binaural cues, aiming to
replicate how humans naturally enhance target sounds in
noisy environments.

In each time-frequency cell, the EC model optimizes noise
cancellation by selecting the ideal ITD (7,(i,j)) and ILD
(o (i, j)) values. These parameters, along with others used in
the model, are summarized in Table 2. These parameters are
calculated as follows:

.. T
T()(l?J) = argmax{pi’j(f)}, |T| <, (1)
T wj
ENL;
N R 2
oL, J) Exg, 2)

J

where p; j(7) is the normalized cross-correlation function that
represents the synchronization of jittered signals between the
left and right ears. ENL,'J and ENR,.‘ ; Tepresent the masker
energies for the left and right ears, respectively. The purpose
of this process is to align the left and right ear signals in such a
way that maximizes the cancellation of unwanted noise while
preserving the target speech signal.

Once the optimal values for 7,(i,j) and «,(i,j) are
obtained, the EC model applies these parameters in a noise
cancellation process. The resulting output signal for each
time-frequency cell Y; j(¢) is computed as

0wl (1 (4 20D
i) = 0| s (1 1 57)

oo R; (r—f”(;’j)))], 3)
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where L;(t) and R;(¢) represent the jittered waveforms
from the left and right ears, respectively, and W;(t) is
the rectangular window function. This dynamic adjustment
process improves speech intelligibility in noisy environments
with competing maskers by optimizing the binaural cues in
each time-frequency unit.

In noisy environments, binaural hearing offers significant
advantages, especially in helping the listener to discriminate
and focus on target sounds. By comparing the time difference
(ITD) and volume difference (ILD) between the arrival of
a sound in the left and right ears, the brain can localize
the source of the sound and improve speech intelligibility.
This mechanism, known as the ‘“‘cocktail party effect,”
helps listeners focus on specific target sounds (e.g., the
speaker’s voice) even when other distracting sounds are in
the background. The proposed method simulates the brain’s
enhancement of important auditory information during this
process by dynamically adjusting the ITD and ILD cues. This
processing makes the target speech clearer while attenuating
the effects of interfering sounds.

2) AUDITORY MASKING AND THE BRAIN'S ROLE

Auditory masking occurs when one sound makes it difficult to
hear another. Through selective attention, the brain prioritizes
the target sound from a specific direction and ignores other
distracting sounds. However, when the masker is similar
to the target sound (e.g., multiple speakers), it is more
difficult for the brain to distinguish the target from the
masker, and this is the situation in which auditory masking
is most likely to affect speech comprehension. Competing
maskers (e.g., other conversations or noises) can interfere
with the listener’s ability to understand the target speech.
The proposed method reduces the effects of these maskers by
incorporating binaural processing. Specifically, the binaural
cues in the EC model improve speech intelligibility in noisy
environments by spatially separating the target signal from
the masked signal.

3) PREDICTING SPEECH INTELLIGIBILITY

The EC model aims to predict listeners’ ability to understand
speech in environments where competing sounds are present.
The model is particularly effective when there is a clear
spatial separation between the target and masking sounds,
as the brain can utilize spatial cues to improve speech
intelligibility. However, when the masking sound is close
to the target sound or has similar spectral characteristics
(e.g., a masking sound similar to the speech), the masking
effect is stronger, making it more difficult to understand the
target speech. This dynamic tuning of binaural cues is critical
because it directly reflects the brain’s strategy in solving
complex auditory scenarios by selectively enhancing target
sounds and suppressing masking sounds to improve speech
intelligibility. By simulating this process, the EC model helps
to understand the effects of masking and spatial separation on
listeners’ speech perception abilities.
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C. SPEECH INTELLIGIBILITY MODEL

To effectively predict speech intelligibility, this study uses the
pre-trained WavLM to extract speech features. WavLM is a
Transformer-based self-supervised learning model designed
for speech processing tasks, capable of learning rich speech
representations directly from raw waveforms [44], [45], [46].
In our experiments, we first load the single-channel speech
signals processed through the MSBG hearing loss and EC
model. The audio signal is segmented at fixed time intervals,
and the WavLM extracts 1024-dimensional deep features
for each audio segment. The model then averages these
features across the time dimension to produce a compact and
representative speech feature vector.

The WavLM extracts features that capture low-level
acoustic features such as spectral properties, pitch, and
resonance peaks, which reflect articulatory clarity and speech
fluency. The model also pays attention to the context and can
learn semantic and syntactic information in speech to help
assess the coherence and completeness of speech content.
In addition, WavLM demonstrates noise immunity when
processing speech data in different environments and can
extract key information related to the goal of the proposed
method (speech intelligibility) in noisy environments. Com-
pared to traditional speech feature extraction methods (e.g.,
Mel frequency cepstral coefficient) [47], WavLM provides
a more comprehensive and efficient end-to-end feature
representation [44].

By utilizing the WavLM, we avoid the complexity of
manual feature engineering while being able to capture
multi-level information from speech signals. As a result,
WavLM plays a key role in speech intelligibility prediction
tasks, supporting more accurate intelligibility scores. In the
proposed method, we used a combination of two comple-
mentary models: LSTM and LightGBM. LSTM networks
are particularly good at capturing sequential dependencies
in time-series data, which is crucial for speech intelligibility
since it involves understanding how speech features change
over time. Using LSTM, we can better interpret variations
in the speech signal, such as pauses, clarity of articulation,
and changes in pitch or tone, which are key factors in
assessing intelligibility.

As for LightGBM, a gradient boosting model based
on decision trees, it is excellent at handling large feature
sets and learning complex non-linear relationships [48].
In our model, the features extracted by WavLM capture
different aspects of the speech signal, and LightGBM
efficiently learns the relationship between these features
and the speech intelligibility scores. Its ability to handle
high-dimensional data without overfitting makes it an
ideal choice for this task.

To improve the robustness of our predictions, we combined
the strengths of both models by weighting their outputs. The
weights were assigned based on each model’s performance
on the validation set, using the inverse of their RMSE values
as a measure. This weighted approach ensures that we take
full advantage of LSTM’s sequential learning capabilities

VOLUME 13, 2025



X. Zhou et al.: Speech Intelligibility Prediction Using Binaural Processing for Hearing Loss

IEEE Access

TABLE 3. Data distribution for the CPC2 dataset. The dataset is split into
three test sets (Set 1, Set 2, and Set 3) for cross-validation, each paired
with a unique training subset, allowing evaluation on unseen listeners
and hearing aid systems. The combined set includes all signals across the
three test sets.

No. of utterances in Train

Data No. of utterances in Test
CEC1 [49] CEC2 [50]

Set 1 5820 2779 305

Set 2 5124 2772 294

Set 3 5239 2796 298

Combined 6297 5944 897

and LightGBM’s feature learning power, resulting in a more
accurate and generalized speech intelligibility prediction
model.

IV. EXPERIMENTS

A. DATASET

In predicting speech intelligibility for hearing aids, it is
crucial to use datasets that reflect real scenarios and capture
speech signal characteristics under multiple interference
sources and environmental conditions. For this study, we uti-
lized the dataset from the CPC2, a competition aimed at
improving methods for predicting speech intelligibility for
hearing aids [19]. As shown in Table 3, the dataset is divided
into two parts: the first Clarity Enhancement Challenge
(CEC1) and the second Clarity Enhancement Challenge
(CEC2), both consisting of speech enhanced by different
systems in noisy environments [49], [50]. The training set
includes three cross-training subsets (Setl, Set2, Set3), each
containing different improved speech in noise (SPIN) used as
references during model training. In this study, we focused on
the complete combined dataset, which includes 6297 signals
from CEC1 and 5944 signals from CEC2, while the combined
test set contains 897 complete signals.

The dataset used in this hearing aid enhancement task
includes multiple auditory scenarios, providing rich training
and testing speech data. The target speech consists of
sentences with with seven to ten words, overlapped with one
to three interfering noise sources. Each scenario is generated
using a geometric room acoustic model, with all sound
sources randomly distributed within a typical living room.
The test scenarios include multiple interference sources, such
as music, speech, or household appliance noises. To further
simulate hearing experiences, the dataset incorporates head
rotations and head-related transfer function (HRTF) effects,
capturing the impact of multiple interference sources on
the speech signal and offering a diverse and challenging
test environment. This dataset was selected because speech
intelligibility prediction requires validation across multiple
noisy environments and types of hearing loss to ensure the
model’s generalization capability. The dataset also accounts
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TABLE 4. Parameter settings in proposed method.

Parameter name (unit)

Parameter settings

MSBG [42]
Center frequencies (Hz)

72.6,97.9, 129.4,168.2, 214.9, 270.5,
335.7, 411.1, 497.7, 596.1, 707.2,
831.7, 970.6, 1124.9, 1299.1, 1495.7,

1717.6, 1968.1, 2250.8, 2569.9,
2930.0, 3336.5, 37952, 4313.1,
4897.5, 5557.1, 6301.7, 7142.0,
8090.5, 9161.0, 10369.2, 11733.0,

13272.2, 15009.5, 16970.3, 19183.5

Hearing loss type ERB, Channels
Mild (1.5, 36)
Moderate (2.0, 28)

Severe (3.0, 19)
Profound 3.0, 19)

EC model

Sampling frequency (Hz) 44100

Window length (seconds) 0.02

Window function type Rectangular
Overlap ratio 50%

Frame step (seconds) 0.01

Center frequency (Hz) 1000

Padding windows 10

Feature extraction

No. of WavLM features 1024 per second
LSTM model

Window size 1024

LSTM units 128

Batch size 6

Epochs 50

Loss function Mean squared error (MSE)
Optimizer Adam
LightGBM model

Objective Regression
Boosting type Gradient boosted decision trees
No. of leaves 40

Learning rate 0.05

Feature fraction 0.9

No. of boosting rounds 800

Evaluation metric RMSE

Loss function MSE

for different types of hearing loss, with participants having
prior experience wearing binaural hearing aids.

Each participant’s hearing profile was determined through
audiograms measured at 250 Hz, 500 Hz, 1000 Hz, 2000 Hz,
3000 Hz, 4000 Hz, 6000 Hz, and 8000 Hz in both ears.
Inclusion criteria for participants were hearing loss in two
or more consecutive frequency bands not exceeding 80 dB
and using binaural hearing aids. Listeners with Méniere’s
disease, hyperacusis, or severe tinnitus were excluded.
The proposed method categorizes hearing loss into mild
(<35 dB), moderate (35-56 dB), and severe (>56 dB) based
on the hearing loss data. Most participants’ audiograms
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TABLE 5. Performance comparison of proposed method with other methods on CPC2 dataset.

Data  Rank Method Intrusive pT RMSE | Features Models
1 EO11 [31] No 0.78 25.1 Whisper, WavLM Temporal and layer-wise transformers with
cross-attention for binaural processing
2 E002 [51] No 0.77 25.3 Whisper Bidirectional long short-term memory
(Bi-LSTM) with attention pooling and
memory-informed exemplar module
3 E009 [52] Yes 0.78 25.4 STOI, phone lattice, audio-  Non-linear regression
metric data
4 E022 [53] Yes 0.77 25.7 Pretrained noise-robustau-  Similarity-based prediction with logistic
tomatic speech recognition  mapping
(ASR) hidden layers
5 Proposed method No 0.75 26.3 WavLM Hybrid model with LSTM and Light-
GBM, combining MSBG hearing loss
and EC model outputs
CPC2
6 E023 [54] Yes 0.76 26.4 Whisper An extended system of enhanced multi-
branched intelligibility network (MBI-
Net+), MBI-Net++ with dual branches for
frame-level and HASPI predictions
7 E016 [54] No 0.75 26.8 Whisper MBI-Net+ with convolutional neural
network-bidirectional long  short-term
memory with attention (CNN-BLSTM-
ATT) for frame-level intelligibility
8 E025 [53] No 0.72 27.9 ASR-derived uncertainty Non-intrusive ASR uncertainty with logis-
(negative entropy) tic mapping
9 be-HASPI [30] Yes 0.67 28.7 Envelope fidelity, auditory ~ Auditory model comparisons
coherence
10 E003 No 0.64 31.1 WavLM Stack regressor ensemble of linear, support
vector machine (SVM), and random forest
regressors
11 E024 No 0.62 31.7 WavLM LSTM with one-hot listener embedding

and EC processing

showed a sloping pattern with less low-frequency loss, which
is typical of age-related hearing loss. The improved SPIN
from the hearing aids was validated through subjective speech
intelligibility tests conducted in the experimental settings,
providing us with correct scores.

B. EXPERIMENTAL SETTINGS

The proposed method utilized the following parameter
settings (listed in Table 4. The center frequencies and
bandwidths of the MSBG hearing loss model! covered the
typical frequency range affected by hearing loss. By adjusting
the width and spacing of auditory filters, these parameters
simulated varying levels of hearing loss, including normal,
mild, moderate, and severe [55]. In the EC model, for each
channel,2 continuous time-domain signals are discretized,
with windowing, overlap, padding, and frame step settings

1 https://github.com/claritychallenge/clarity/tree/main/clarity/evaluator/
msbg
2https:// github.com/achabotl/pambox
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applied to smooth signal variations over time, thereby
enhancing the speech intelligibility. The feature extraction
uses intermediate layer outputs from WavLM, processing
each second of the signal [46].

The LSTM network then predicted speech intelligibility,
using a window size to control the feature set. An input layer
was added, followed by a reshaping layer, an LSTM layer,
and a SeqSelfAttention layer to learn global dependencies.
Flattened and dense layers generated the final prediction.
On the other hand, the LightGBM model uses a decision
tree structure to learn the complex nonlinear relationships
between these features and speech intelligibility scores
by processing the set of multi-level features extracted by
WavLM. After both models have been trained, weights are
assigned to each by calculating the RMSE on the validation
set. Specifically, the weights are computed based on the
inverse of the RMSE of each model, and the final weighted
predictions are obtained by combining the temporal learning
capability of LSTM with the complex feature learning
capability of LightGBM.
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C. EVALUATION METRICS

In this work, we utilized to assess the performance of
the proposed model: the Pearson correlation coefficient
(p) and the RMSE. These two metrics contribute to a
comprehensive assessment of the intelligibility prediction
task by measuring linear correlation and prediction accuracy,
respectively.

e

The p measures the linear relationship between the predicted
and correct scores. A value close to 1 suggests a strong
positive correlation, signifying that the model is able to
capture the linear trend present in the correct scores. The
formula for calculating p is

_ S G =G — )
p= —,
NN O D

where y; is the correct score, y; is the predicted score, and
y and y are the means of the predicted and correct scores
respectively.

“

2) RMSE

The RMSE measures the average magnitude of the error
between the predicted and correct scores, providing insight
into the overall prediction accuracy. Lower RMSE values
indicate more accurate predictions. The RMSE is defined as

RMSE = i — i), 5)

where N is the total number of samples, y; is the predicted
score, and y; is the correct score. The RMSE quantifies
the deviation between predicted scores and correct scores
to accurately predict hearing aids. Given that subjective
intelligibility scores can vary from one listener to another,
the RMSE measures the extent to which the proposed model
replicates these subjective assessments.

V. ANALYSIS I: OVERALL EVALUATION OF PROPOSED
METHOD IN PREDICTING SPEECH INTELLIGIBILITY

We compare the performance of our proposed method
against several existing methods for predicting speech
intelligibility on the second Clarity Prediction Challenge
(CPC2) dataset [19]. The comparison is based on two key
metrics: p and RMSE. A higher p indicates a stronger
correlation between the predicted and correct scores, while
a lower RMSE suggests more accurate predictions.

The CPC2 dataset comprises improved SPIN from various
hearing aid algorithms and correct scores from listening
tests with hearing-impaired participants. The objective is to
develop models that can accurately predict these intelligibil-
ity scores based solely on the improved SPIN without access
to the clean reference speech signals (non-intrusive method).

Table 5 summarizes the performance of several speech
intelligibility prediction methods employed in the CPC2
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FIGURE 3. Average RMSE for different combined hearing severity levels
using the proposed and baseline methods. Lower RMSE values indicate
better prediction accuracy across various combinations of hearing loss
severity.

dataset, each utilizing different strategies for modeling speech
in noisy environments. The methods vary in their reliance on
clean reference speech signals (intrusive vs. non-intrusive),
the complexity of their models (e.g., machine learning vs.
traditional signal processing), and whether they account for
binaural hearing. EO11, which uses deep CNNs to capture
speech features that link to intelligibility [31], has achieved
good performances without needing the clean speech signals.

Non-intrusive methods such as E002 and E023 rely on
machine learning models and engineered features, including
spectral and temporal dynamics, to predict speech intel-
ligibility without needing a clean reference signal [51],
[54]. In contrast, methods like E009 and E022, which are
intrusive [52], [54], require access to the clean signal and
use techniques like STOI or auditory models to mimic human
hearing. While the be-HASPI method also accurately models
auditory perception, it may be less practical in real scenarios
where clean signals are unavailable.

As shown in Table 5, the proposed method achieves a p
of 0.75 and an RMSE of 26.3. Unlike intrusive methods,
which require a clean reference signal, our non-intrusive
approach is more suitable for real-life applications. When
comparing our proposed method to the baseline method,
be-HASPI, a significant improvement is evident. The
be-HASPI method achieves a p value of 0.67 and the RMSE
of 28.7. In contrast, our non-intrusive method outperforms be-
HASPI by a substantial margin in both correlation and error
metrics. Specifically, our method shows an improvement
of 11.9% in the p and a reduction of 8.3% in the RMSE.

A. PERFORMANCE ANALYSIS OF PROPOSED METHOD

In this experiment, 15 listeners with different types of
binaural hearing loss were tested in the combined test
set. The binaural hearing loss in these listeners ranged
from mild to severe, and the significant difference in
binaural hearing loss affected the accuracy of the speech
intelligibility prediction. A comparative analysis of RMSE
using different combinations of hearing loss when predicting
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(a) Average RMSE for consistent vs.
inconsistent hearing levels
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FIGURE 4. Performance of proposed and baseline methods across consistent and inconsistent hearing levels. In (a), lower RMSE indicates
better accuracy in the prediction of speech intelligibility scores, while in (b), higher o reflects stronger agreement between predicted and

correct scores.

speech intelligibility is crucial. Different hearing loss types
(e.g., combinations of mild and moderate hearing loss)
affect speech processing differently. By analyzing RMSE for
these combinations, the prediction accuracy of the proposed
method can be evaluated for different hearing loss types.

1) IMPACT OF DIFFERENT HEARING LOSS COMBINATIONS
As shown in Fig. 3, although the CPC2 dataset contains a
variety of scenarios covering SNRs ranging from —12 dB to
6 dB, the lower SNR implies that the speech signal is masked
by the noise to a greater extent, making speech intelligibility
prediction more difficult. In addition, the type of hearing
loss of an individual further increases the complexity of
prediction, especially in noisy environments.

The proposed method exhibits different levels of RMSE
on different combinations of hearing loss types. Fig. 3 shows
the average RMSE for different combinations of hearing
severity levels, comparing the proposed method with the
baseline (Be-HAPSI). As we can see, the proposed method
shows a significant improvement over the Be-HAPSI for
cases with differing hearing loss types between the ears.
For example, in the MILD/MODERATE combination, the
proposed method achieves relatively low RMSE values, with
an RMSE reduction of approximately 15.9% compared to
the Be-HAPSI, indicating that the proposed method has high
prediction accuracy with this type of hearing loss. In contrast,
as the hearing loss increases (e.g., SEVERE/SEVERE), the
RMSE value increases significantly, indicating that the model
has a higher prediction error when dealing with complex
hearing loss combinations.

Moreover, in both MILD/MODERATE and SEVERE/
MODERATE combinations, the proposed method’s RMSE
values remain relatively low, reducing prediction errors
associated with hearing loss. This indicates that integrating
binaural information plays a crucial role, particularly in
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asymmetric hearing loss scenarios, where different degrees
of hearing loss between the ears require precise binaural
processing. As a result, the proposed method leverages
binaural cues to enhance the speech intelligibility prediction
performance.

2) CONSISTENT VS. INCONSISTENT HEARING LEVELS

Based on the results of the proposed method and Be-
HASPI, we compared the speech intelligibility prediction
performance of listeners at consistent and inconsistent
hearing levels (see Fig. 4). In Fig. 4(a), listeners at
inconsistent listening levels show lower RMSE values (23.68)
compared to listeners at consistent listening levels (27.17)
using the proposed method, which indicates that listeners
at inconsistent listening levels are more accurate in speech
intelligibility prediction. The proposed method is thus better
able to handle different levels of hearing loss.

Meanwhile, using the proposed method, the p values in
Fig. 4(b) further validate this conclusion. The p of the
listeners with inconsistent hearing levels is as high as 0.80,
while that of the listeners with consistent hearing levels is
only 0.73. This indicates a better match between the predicted
scores of the model and the correct scores at inconsistent
hearing levels. This result suggests that the proposed method
can accurately reflect the speech comprehension ability of lis-
teners when dealing with complex hearing loss combinations.
In particular, using binaural information plays an important
role in improving the accuracy of speech intelligibility
prediction when there are significant differences in binaural
hearing loss.

Compared to the Be-HASPI, the proposed method sig-
nificantly improves the accuracy of speech intelligibil-
ity prediction under complex hearing loss conditions by
integrating binaural cues. The prediction performance of
listeners with inconsistent hearing levels was significantly
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improved compared to those with consistent hearing levels,
as evidenced by a reduction in RMSE values of about 12.8%
and an improvement in p of about 9.6%. This suggests that the
integrated processing of binaural information is particularly
effective in the case of asymmetric hearing loss, enhancing
the adaptability and robustness of the model.

B. DISCUSSION

Our proposed method shows a strong performance in pre-
dicting speech intelligibility without requiring access to clean
speech signals. We capture linear and non-linear relationships
in the data by using models like LightGBM, which handles
complex datasets with high-dimensional features, and LSTM,
which captures temporal dependencies in speech signals.

In analyzing the impact of different hearing loss com-
binations, the proposed method shows varying levels of
prediction accuracy. As discussed earlier, our method exhibits
lower RMSE for listeners with inconsistent hearing levels,
indicating that the model is better at predicting speech
intelligibility. However, as the severity of hearing loss
increases, particularly in SEVERE/SEVERE combinations,
the RMSE increases, indicating greater prediction challenges.

Moreover, while this performance is competitive among
non-intrusive methods, it is slightly below the top-ranking
methods such as EO11 and E009, which achieve lower RMSE
scores of 25.1 and 25.4, respectively. This indicates that there
is still room for improvement in the prediction accuracy of
the proposed method, particularly in comparison to the top-
ranking methods.

VI. ANALYSIS II: IMPACT OF HEARING LOSS ON AUDIO
SIGNAL CHARACTERISTICS

A. ANALYSIS OF HEARING LOSS GROUPS IN CPC2

Our proposed method is valid for predicting speech intelli-
gibility at different levels of hearing loss severity. To further
explore how different levels of hearing loss affect the received
speech signal and speech intelligibility, this section analyzes
the effects of hearing loss in depth and simulates various
hearing conditions. First, we present an overview of the
hearing loss groups in the CPC2, highlighting the distribution
of hearing loss severity across the hearing loss groups. The
audiogram data are then examined in detail to understand
how hearing thresholds change in different frequency bands
and the impact of these changes on speech perception. Then,
using the proposed method, we simulate different types of
hearing loss and compare their effects on the same speech
signals. Finally, the proposed method uses the EC model
to take into account the union of binaural information and
improve speech intelligibility for listeners with binaural
hearing loss.

The dataset includes 31 listeners with varying degrees
of hearing loss severity, as detailed in Table 6. The
listener with the highest number of test instances (listener
L0218) appeared 633 times, while most listeners appeared
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TABLE 6. Listener counts and hearing loss severity for 31 listeners (left
and right ear).

Listener ID Count Left ear severity  Right ear severity

L0200 626 SEVERE SEVERE
L0201 641 SEVERE SEVERE
L0202 220 MODERATE MODERATE
L0206 231 SEVERE SEVERE
L0208 229 MODERATE MODERATE
L0209 635 SEVERE SEVERE
L0212 627 SEVERE SEVERE
L0215 226 SEVERE SEVERE
L0216 237 SEVERE SEVERE
L0217 226 MODERATE SEVERE
L0218 633 SEVERE MODERATE
L0219 629 SEVERE MODERATE
L0220 234 MODERATE MODERATE
L0221 645 MODERATE MODERATE
L0222 628 SEVERE SEVERE
L0224 228 SEVERE SEVERE
L0225 238 SEVERE MODERATE
L0227 228 SEVERE MODERATE
L0229 238 MODERATE MODERATE
L0231 232 SEVERE MODERATE
L0235 227 MILD MILD
L0236 232 SEVERE SEVERE
L0239 238 SEVERE SEVERE
L0240 630 MODERATE MODERATE
L0241 243 SEVERE SEVERE
L0242 643 SEVERE SEVERE
L0243 639 SEVERE MODERATE
L0249 398 MODERATE MODERATE
L0250 400 MILD MODERATE
L0252 399 SEVERE SEVERE
L0254 363 SEVERE SEVERE

around 200400 times. These counts reflect the degree of
performance of the different listeners in the dataset.

The listeners had varying degrees of binaural hearing
impairment. Specifically, 68% had severe hearing loss in the
left ear, and 58% had severe hearing loss in the right ear. This
means that 21 out of 31 listeners had severe hearing loss in
at least one ear. The rest of the listeners were categorized
as having moderate or mild hearing loss, with 29% having
moderate hearing loss in the left ear and 35% in the right ear.
Only a small percentage of listeners had mild hearing loss in
both ears. For the older age group, this distribution of hearing
loss is close to the real scenarios, i.e., severe hearing loss is
more common.

B. ANALYSIS OF AUDIOGRAMS

In the CPC2 study, listener information is obtained through
audiometric testing. Audiograms are used to measure an
individual’s response to sounds and speech across different
frequencies. These tests include tones and speech sounds that
assess sensitivity at specific frequencies (often represented by
beeps), which help us understand what a person with hearing
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FIGURE 5. Adapted from the original chart by the American academy of
audiology at audiology.org, this speech banana chart illustrates how
various levels of hearing loss affect the perception of speech sounds
across different frequency bands. The yellow “banana” shape represents
the typical frequency and sound pressure range of speech phonemes
audible to individuals with normal hearing, including common vowels and
consonants. As hearing loss severity increases (from mild to profound),
hearing thresholds in different frequency bands rise, making it difficult
for individuals to perceive certain phonemes. For example, individuals
with moderate hearing loss may struggle to hear high-frequency
consonants even within the conversational sound pressure range
(40-70 dB), leading to misunderstandings during conversations.

loss can or cannot hear. Figure 5 illustrates how hearing loss
affects perception across various frequencies.

The yellow “banana” shape on the audiogram represents
the typical frequency and loudness range (20-70 dB) of
human speech sounds, including vowels and consonants.
This “speech banana” highlights the critical frequencies
necessary for everyday speech comprehension, indicating
which sounds are likely audible or challenging for individuals
with hearing loss, depending on their specific hearing
threshold curve. This graph helps us visualize which sounds
may be missed by someone with hearing loss, depending on
their hearing threshold across different frequencies. It also
emphasizes that speech sounds vary in pitch and loudness,
contributing to an understanding of how hearing loss affects
communication.

For individuals with hearing loss, their audiogram curve
shifts downward at different frequencies, meaning that
louder sound levels are required to detect the same sounds.
As hearing loss progresses-from mild to profound-the
threshold curve begins to cover more of the ‘“banana”
area, indicating that fewer speech sounds remain audible.
This reduction in accessible speech sounds impacts overall
speech comprehension. The “speech banana” effectively
demonstrates the impact of hearing loss by overlaying each
consonant and vowel in terms of pitch and relative loudness.
The range of human speech typically forms a banana-like
shape across the upper third of the audiogram, where the
essential frequencies for speech clarity are found.

The following sections provide further analysis of how dif-
ferent frequency ranges contribute to speech comprehension:

25830

1) LOW FREQUENCIES (500 Hz)

This range includes low-pitched sounds like vowels and
environmental noises. People with mild hearing loss gen-
erally retain sensitivity to these low-frequency sounds,
which contribute significantly to speech volume. However,
as hearing loss worsens, these sounds may become difficult
to hear.

2) MID FREQUENCIES (500 Hz TO 2000 Hz)

Mid frequencies are crucial for understanding speech, as they
contain many vowel and consonant sounds. Individuals with
moderate hearing loss often struggle with these sounds,
even when volume is increased. Loss in this range makes
it challenging to understand speech clearly, especially in
conversations.

3) HIGH FREQUENCIES (2000 Hz TO 8000 Hz)
High-frequency phonemes like “s,” “f,” and “th” are
essential for speech clarity and word distinction. These
are often the first frequencies affected by hearing loss,
particularly age-related or noise-induced loss. The figure
shows that the ability to perceive these high frequencies
declines rapidly as hearing loss progresses. In cases of
severe hearing loss, much higher volumes are needed to
hear these sounds, if they can be heard at all. This explains
common difficulties distinguishing words like ““sat,” ““fat,”
and “that.”

Age-related hearing loss, or presbycusis, often results
in more significant loss at high frequencies than low
frequencies. Audiogram data reflect this trend, showing a
steep decline in high-frequency sensitivity for older adults.
This loss impacts speech clarity because many critical
speech sounds, particularly consonants, fall in this range.
Reduced perception of these sounds leads to common
misunderstandings in communication, particularly in noisy
environments or when the listener is far from the speaker.
Even mild hearing loss can affect one’s ability to understand
speech, as shown in the audiogram’s ‘“‘speech banana” area.
This effect is especially noticeable when background noise
or the listener is distant from the speaker. Noise and distance
amplify the difficulty of picking up subtle details in speech,
leaving individuals wondering why they can “hear” but not
fully “‘understand.”

C. PROPOSED METHOD: SIMULATING DIFFERENT TYPES
OF HEARING LOSS
In this section, we simulate the same speech signal with
different types of hearing loss to better understand how these
impairments alter auditory perception. The input signal is the
sentence ‘“The following comment is from one member of
this board,” as shown in Fig. 6, with the clean reference signal
serving as a baseline.

Simulations are conducted for normal, mild, moderate,
and severe hearing loss by adjusting the auditory filter
characteristics, such as the ERB and channel count, to reflect
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FIGURE 6. Spectrogram comparison of simulated hearing loss at various
severity levels. (a) shows the time-domain waveform of the clean
reference signal, while (b) to (e) display GTFB spectrograms under
different simulated hearing loss conditions. The y-axis represents the
center frequencies of the auditory filters (Hz), covering frequency
components from low to high. For different levels of hearing loss, the
auditory filter bandwidths are broadened to simulate the reduction in
frequency resolution due to hearing impairment (e.g., mild hearing loss
by 1.5 ERB). The red boxes highlight the frequency regions where
high-frequency phonemes such as “th,” “e,” and “f” are located,
demonstrating the challenges faced by individuals with hearing loss in
distinguishing these high-frequency sounds. As the severity of simulated
hearing loss increases from (b) to (e), the reduction in frequency
selectivity leads to noticeable attenuation and spectral blurring,
especially in cases of moderate and severe hearing loss.

decreased frequency resolution. As the severity of hearing
loss increases, the filter bandwidth broadens and the number
of channels reduces, simulating the effect of inner ear damage
that diminishes frequency selectivity. For example, normal
hearing corresponds to 1 ERB with more channels, mild
hearing loss to approximately 1.5 ERB, moderate to 2.0 ERB,
and severe to 3.0 ERB with progressively fewer channels.
This broadening and reduction in channels leads to the ““blur-
ring” of frequency components in the spectrogram, making
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it harder to distinguish specific speech sounds. By comparing
spectrograms across these simulated conditions, we can
observe how different levels of hearing impairment alter
the frequency content and intensity of the signal, thereby
illustrating the impact on speech intelligibility.

The sentence “The following comment is from one
member of this board” contains a variety of consonant and
vowel phonemes encompassing a broad range of speech
sounds, making it an excellent example for assessing the
impact of hearing loss. Consonants such as “f”” and “s” are
particularly susceptible to the effects of hearing loss, while
vowels like “i”” and “a” are less affected. This combination
of sounds allows us to observe how hearing loss affects
the perception of different speech components. Fig. 6(a)
illustrates the clean signal, with speech sounds represented
across the frequency channels, demonstrating optimal speech
intelligibility.

In the simulated scenarios, different types of hearing loss
exhibit distinct impacts on speech intelligibility, as seen
in the GTFB spectrograms (Fig. 6). For normal hearing
(Fig. 6(b)), minimal distortion is observed, with most spectral
components preserved and speech clarity largely unaffected.
As the severity increases to mild hearing loss (Fig. 6(c)),
there is noticeable attenuation in certain frequency channels,
making some speech sounds harder to distinguish despite
the overall intelligibility of speech. In the case of moderate
hearing loss (Fig. 6(d)), the energy levels across these
channels are substantially weakened, reducing speech clarity
and requiring listeners to rely more on contextual cues
to understand sentences. Finally, in severe hearing loss
(Fig. 6(e)), the energy levels across many channels are
significantly reduced, leading to a blurred spectrogram and
making speech intelligibility nearly impossible to guarantee.

As hearing loss increases, the effects extend beyond the
attenuation of specific speech sounds due to the following
factors:

1) INCREASED HEARING THRESHOLDS

Due to damage to the cochlea or auditory nerve, signals must
reach a higher loudness to be perceived. This is reflected in
the simulation as a decrease in overall signal energy in the
spectrogram. The attenuation is evident in Figs. 6(c) and 6(d),
where the energy levels across the frequency channels are
reduced.

2) LOUDNESS RECRUITMENT

Hearing loss can lead to loudness recruitment, where softer
sounds are difficult to perceive, but sudden loud sounds
appear overly loud. This phenomenon is challenging to fully
visualize on a spectrogram but can be reflected by sudden
increases in energy in certain channels. Although this is
less apparent in mild hearing loss, some sounds may appear
abnormally loud to the listener in the moderate and severe
losses shown in Figs. 6(d) and 6(e).
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FIGURE 7. Audiogram showing hearing thresholds for listener L0219 in
each ear, with right (red) and left (blue) ears plotted across frequency
bands. The shaded areas represent different levels of hearing loss
severity: normal (beige), mild (light orange), moderate (pink), severe
(brown), and profound (dark brown). This visual aids in understanding
the degree of hearing loss at various frequencies for each ear.

3) REDUCED FREQUENCY SELECTIVITY

Hearing loss diminishes the listener’s ability to discriminate
between different spectral components, especially in noisy
environments where distinguishing adjacent sounds becomes
difficult. In the context of GTFB spectrograms, the y-axis
represents distinct frequency channels, each corresponding
to the center frequency of a specific gammatone filter that
models the human auditory system’s frequency selectivity.
This simulation demonstrates that with increasing severity
of hearing loss, there is a significant reduction in energy
levels across these frequency channels, particularly affecting
higher frequencies. In Fig. 6(e) (severe hearing loss), the
spectrogram shows a marked decrease in color intensity
across multiple channels, indicating a loss of energy in
those frequency bands. This reduction in energy makes it
challenging to clearly distinguish speech sounds, thereby
directly impacting speech intelligibility.

D. PROPOSED METHOD: COMBINING BINAURAL
INFORMATION

In the analyses in Figs. 3 and 4, we noticed that the
prediction error (RMSE) varied under different combinations
of hearing loss. The proposed method better predicted the
results, especially in the case of asymmetric right and left
ear hearing loss. Taking this finding, we further validate the
effectiveness of the proposed method in dealing with different
combinations of hearing loss by simulating the binaural
hearing loss of listener L0219 and observing the integration
effect of the EC model.

1) AUDIOGRAM ANALYSIS OF LISTENER L0219

From Fig. 7, we can see that listener L0219 has severe hearing
loss in the left ear, while the loss in the right ear is relatively
mild. In particular, the hearing in the left ear shows a moderate
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FIGURE 8. Spectrogram comparison after hearing loss simulation and EC
model processing for listener L0219. (a) shows the speech signal
processed by the hearing aid enhancement module, containing some
residual noise. (b), (c), and (d) simulate listener L0219 under different
hearing loss conditions. Specifically, (b) and (c) display GTFB
spectrograms for the left and right ears with severe and moderate hearing
loss, respectively, where the y-axis represents the center frequencies of
the auditory filters affected by hearing loss. (d) combines signals from
(b) and (c) using the EC model, which leverages binaural cues to improve
intelligibility. The EC model’s advantage in utilizing binaural information
is that it preserves the high-frequency details essential for speech
intelligibility.

loss from the low frequency (250 Hz) and becomes severe
in the middle and high frequency bands (above 2000 Hz).
At the same time, the loss in the high-frequency region
has a greater impact on the discrimination of consonants,
especially for consonants such as ‘““s” and “th”, which
may not be fully distinguished by the listener. In addition,
the reduced frequency selectivity also makes it difficult to
distinguish sounds of similar frequencies, which reduces
speech intelligibility.

2) SIGNAL SIMULATION AND ANALYSIS OF EC MODEL

After completing the audiogram analysis for listener L0219
(discussed above), we here simulate the tests conducted for
this listener using the proposed method. Before simulating
the hearing loss, the input signal was processed through an
enhancement module, resulting in the improved SPIN shown
in Fig. 8(a). Although the enhancement module reduces some
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TABLE 7. Overview of noise types and details of CEC1 and CEC2 datasets.

Dataset  Total instances  Noise types Details
CEC1 6297 Noise Includes household appliance noise like dishwashers, fans, hairdryers, kettles, mi-
crowaves, vacuums, and washing machines. Each noise type is uniquely labeled by its
category and ID.
Noise Similar appliance noise types as in CEC1, with the same labeling convention.
CEC2 5944 . .
Speech Includes speech interference labeled by accent and speaker ID (e.g., “mif_02484" for a
Midlands-accented female speaker).
Music Includes music tracks from the MTG Jamendo database [56], labeled by unique track IDs.

TABLE 8. Comparison of the proposed model’s performance across the
CEC1 and CEC2 datasets, highlighting how varying interference
complexities influence prediction accuracy in speech intelligibility tasks.
CEC1 contains simpler, appliance-generated noise sources, while CEC2
incorporates a broader range of real-world interference, including music,
speech, and noise, making it a more challenging dataset. The
combination of CEC1+CEC2 models highlights the importance of training
in different settings.

Dataset pT RMSE |
CEC1+CEC2 0.70 28.46
CEC1 0.32 42.74
CEC2 0.70 28.18

noise, the signal still contains various types of residual noise.
The MSBG hearing loss model was then applied to simulate
both the left and right ears separately, resulting in the signals
shown in Figs. 8(b) and 8(c). Subsequently, the proposed
method employed the EC model to process and integrate the
signals from both ears, as shown in Fig. 8(d).

As illustrated in Fig. 8, by simulating the left and right
ear signals and integrating them using the EC model, we can
observe the following:

Figure 8(b) shows the left ear signal after the simulation
of severe hearing loss. In this GTFB spectrogram, significant
attenuation is observed across multiple frequency channels.
The decreased energy levels indicate that auditory cues are
weakened or lost, especially in channels corresponding to
higher frequencies.

Figure 8(c) depicts the simulated right ear signal, reflecting
moderate hearing loss. Compared to the left ear in Fig. 8(b),
the right ear retains more auditory information. However,
the spectrogram exhibits attenuation across several frequency
channels, making it challenging to discern certain speech
components. The energy levels in these frequency channels
are reduced, affecting the perception of speech sounds.

Figure 8(d) displays the result of applying the EC model
to integrate the binaural information from both ears. Unlike
the monaural simulations in Figs. 8(b) and 8(c), which show
notable attenuation and loss of spectral detail in certain
channels due to hearing loss, the EC model combines residual
auditory information from each ear, effectively compensating
for inconsistent hearing loss. The EC model enhances
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specific channels where auditory cues were weakened or
lost in individual ear simulations by optimizing interaural
time delays and amplitude differences. As a result, some
attenuated channels regain partial energy, as observed in the
figure, demonstrating the model’s ability to restore essential
speech information. This selective restoration does not
uniformly recover all frequency bands. Instead, it enhances
regions where residual binaural cues allow improved
perception.

The effectiveness of this binaural integration was further
validated through subjective testing. The results showed that
the listener achieved a perfect intelligibility score of 100 in
this scenario, even though L0219 has severe hearing loss
in both ears. Despite the significant hearing impairments,
she was able to accurately hear and comprehend the speech
content. In the prediction generated by the proposed model,
a score of 85.59 was achieved. This demonstrates that the EC
model effectively compensates for the impact of hearing loss,
especially when the hearing loss is inconsistent between the
two ears, enabling the extraction and processing of critical
speech information.

VII. ANALYSIS IlI: INVESTIGATING THE IMPACT OF
DIFFERENT INTERFERENCE SOURCES

This section evaluates the impact of different interference
sources in the training scenarios on the speech intelligi-
bility prediction results of hearing aids, providing insights
for selecting more suitable training data in future work.
Specifically, we compare the CEC1 and CEC2 datasets from
the Clarity Challenge, which both consist of speech signals
with added noise but with different interference conditions
representing different auditory challenges. By evaluating the
proposed method on these two datasets, we can observe its
ability to handle different levels of complexity.

In analyzing the CEC1 and CEC2 datasets, we focus
on the effects of single and multiple interference sources
on the speech intelligibility model. As shown in Table 7,
the CEC1 dataset has single interference sources, mainly
noise generated by various household appliances, providing
a relatively controlled environment to evaluate baseline
performance. The CEC2 dataset is more complex and
contains multiple interference sources, such as noise, speech,
and music, modeling a complex environment that is more
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closely aligned with a real scenario. Such scenarios with
multiple interference sources are typically more challenging.

By comparing the performance of the CEC1 and CEC2
datasets in the speech intelligibility prediction task, we find
that the model on the CEC2 dataset performs better in terms
of both relevance and error of prediction. The experiments
used a combined test set of 897 signals provided by the
CPC2 challenge to simulate unknown predictions for real
scenarios. We explored the impact of the dataset using a more
straightforward speech intelligibility model that includes an
input layer, LSTM layer, and attention layer designed to
capture temporal features and significant parts of the speech
signal and use them to predict intelligibility scores.

According to Table 8, the results of the model trained solely
on the CECI1 dataset and the model trained solely on the
CEC?2 dataset show that the CEC2 dataset reduced the RMSE
by approximately 34.07%. The performance of the model
with the same parameters on different datasets indicates
that training with CEC1 alone did not significantly improve
prediction performance on the unknown test set. In contrast,
the model trained on a combination of CEC1 and CEC2 better
handled mixed interference conditions. This demonstrates
that diverse training in noisy environments helps to improve
the model’s ability to handle multiple interference sources in
reality.

To determine whether the inclusion of the CEC1 and CEC2
datasets versus the CEC2 dataset alone yields statistically
significant performance improvements, we conducted paired
t-tests and non-parametric Mann-Whitney U tests on the
error metrics across these datasets. Results from both tests
(p > 0.05) indicate that the differences in prediction
error between the two training scenarios are not statistically
significant. This finding suggests that although training with
the combined CEC1 and CEC2 datasets reduces RMSE, the
reduction is not significant enough to bring about a robust
performance gain. Thus, while the CEC1 dataset may add
variety in interference types, its simpler noise structure may
limit its contribution to predictive accuracy in real-world,
complex noise environments, where the CEC2 dataset alone
is effective. Future efforts might focus on further diversifying
complex interference conditions to enhance model robustness
in multi-noise scenarios.

VIIl. CONCLUSION AND FUTURE WORK

In this study, we proposed a non-intrusive speech intelligi-
bility prediction method that integrates binaural processing
for hearing loss. Hearing loss is modeled by simulating the
multi-stage process of how the outer ear, middle ear, inner ear,
and binaural cues process information. This is combined with
LSTM and LightGBM models. Our method demonstrates
a strong ability to capture key features of speech signals,
especially in noisy environments and for different types of
hearing loss.

« Speech intelligibility prediction using binaural pro-
cessing and hearing loss simulation:

25834

We confirmed that hearing loss affects key features of the
speech signal, particularly the attenuation of high-frequency
components, shown in spectrograms. Simulating hearing loss
through the MSBG model includes raised hearing thresholds,
loudness reconstruction, and reduced frequency selectivity.
We found that these effects result in the attenuation or
blurring of high-frequency consonants in speech, making
it difficult for listeners to distinguish between similar
sounds. This loss of high-frequency information directly
affects the accuracy of speech intelligibility predictions. With
the EC model for binaural processing, we mitigate these
effects, allowing the model to focus on the better-hearing
ear and reduce masking effects, thereby improving speech
intelligibility in noisy environments.

« Improved prediction accuracy and robustness:

Compared to the baseline method (be-HASPI), our model
demonstrated an 8.3% reduction in RMSE, indicating a
meaningful improvement in prediction accuracy. Our method
demonstrated a substantial improvement for individuals with
asymmetric hearing loss, with RMSE reduced by 12.8%
compared to symmetric hearing loss cases. This improvement
is largely due to the integration of binaural processing, which
allows the model to focus attention on the ear with better
hearing, compensating for the weaker ear and enhancing
overall speech intelligibility. This capability makes our
approach more effective in real scenarios where hearing loss
often differs between ears, providing a more personalized
prediction for users with uneven auditory profiles.

However, despite these strengths, the proposed method still
has areas for improvement. When predicting speech intelligi-
bility for previously unseen listeners in noisy environments,
our model’s performance, though better than be-HASPI, lags
by approximately 4.6% in accuracy compared to the leading
the state-of-the-art method (EO11) [31].

Future work will focus on refining our model to bridge
this gap by improving the robustness of feature extraction in
noisy environments and extending the model’s adaptability
to handle even more complex auditory scenarios. In addition,
we will incorporate more diverse datasets, especially listener
datasets with higher subjective speech intelligibility. Such
datasets help to narrow the performance gap with intrusive
models and make non-intrusive models more reliable and
universally applicable.
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