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ABSTRACT Potential biases within automated video interview assessment algorithms may disadvantage
specific demographics due to the collection of sensitive attributes, which are regulated by the General Data
Protection Regulation (GDPR). To mitigate these fairness concerns, this research introduces MAG-BERT-
ARL, an automated video interview assessment system that eliminates reliance on sensitive attributes.
MAG-BERT-ARL integrates Multimodal Adaptation Gate and Bidirectional Encoder Representations from
Transformers (MAG-BERT) model with the Adversarially Reweighted Learning (ARL). This integration
aims to improve the performance of underrepresented groups by promoting Rawlsian Max-Min Fairness.
Through experiments on the Educational Testing Service (ETS) and First Impressions (FI) datasets, the
proposed method demonstrates its effectiveness in optimizing model performance (increasing Pearson
correlation coefficient up to 0.17 in the FI dataset and precision up to 0.39 in the ETS dataset) and fairness
(reducing equal accuracy up to 0.11 in the ETS dataset). The findings underscore the significance of
integrating fairness-enhancing techniques like ARL and highlight the impact of incorporating nonverbal
cues on hiring decisions.

INDEX TERMS Automatic video interview assessment, fairness, model interpretability, adversarial
learning

I. INTRODUCTION

In recent years, there has been an increasing trend in the
use of automated video interview assessment systems for
evaluating candidates across various industries [1]. These
systems offer several benefits, including saving time for
hiring managers and providing flexibility for candidates in
scheduling interviews [2]. Today, automated video interview
assessment systems are used worldwide. Notably, HireVue, a
prominent company in the automated hiring industry, claims
to have assessed over 80 million interviews [3].

Automated video interview assessment systems offer a
convenient and efficient method for candidate evaluation in
today’s globalized and remote work environments. How-
ever, the increasing reliance on these systems has raised
concerns regarding fairness and the collection of sensitive
data, potentially disadvantaging individuals from underrep-
resented groups [4]. Ethical and legal issues, particularly

anti-discrimination laws, must be navigated to prevent the
embedding of biases that could perpetuate discrimination,
such as gender bias [1], [5], [6]. The General Data Protection
Regulation (GDPR) strictly regulates the protection of sen-
sitive data such as age, gender, and race, in accordance with
the EU Data Protection Directive [7]–[9]. As a result, some
existing research [10]–[12] falls short in terms of addressing
fairness without using sensitive data. Additionally, under the
EU’s AI Act [13], automated interview systems are classified
as high-risk AI, necessitating stringent observability, human
oversight, and transparency requirements [14]. Consequently,
the development of fair and interpretable automated video
interview assessment systems that do not rely on sensitive
attributes has become a critical area of research and develop-
ment.

Addressing these issues requires a solution that ensures
fairness without relying on sensitive attributes. Previous re-

VOLUME 4, 2016 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3473314

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

search in automated video interviews, including research by
[11], [15], and [16], has attempted to mitigate bias. How-
ever, these approaches still depend on sensitive attributes to
achieve fairness. In contrast, [17] developed automated video
interview systems that do not incorporate sensitive attributes,
but their methods fail to adequately address fairness con-
cerns.

This research introduces MAG-BERT-ARL to ensure
fairness in automated video interview assessment systems
without relying on sensitive attributes. MAG-BERT-ARL
combines Multimodal Adaptation Gate and Bidirectional
Encoder Representations from Transformers (MAG-BERT)
[18], which has demonstrated effectiveness in incorporating
nonverbal cues with text, with Adversarially Reweighted
Learning (ARL) [19], a technique designed to enhance Rawl-
sian Max-Min Fairness without demographics. In this con-
text, Rawlsian fairness refers to optimizing accuracy for the
least advantaged groups [19]. Several modifications were
incorporated to enhance its effectiveness. While ARL is tradi-
tionally applied to tabular data, this adaptation leverages the
CLS token from BERT, thus integrating multiple modalities
from input videos and addressing fairness concerns. The
approach employs techniques such as batch normalization
[20], skip connections [21], and ReLU activation functions
[22] to enhance performance and fairness. These methods
are important in preventing the vanishing gradient problem
that could arise from integrating MAG-BERT with ARL.
Furthermore, Gradient SHAP [23] is utilized to assess the
contribution of individual input features, providing an inter-
pretable evaluation of the model’s predictions.

Experiments were conducted on the Educational Test-
ing Service (ETS) [17] and First Impressions (FI) [24]
datasets. Three variants of MAG-BERT-ARL were devel-
oped, each utilizing different loss functions: Mean Squared
Error (MSE), Binary Cross-Entropy (BCE), and their combi-
nation. ARL integration improved both fairness and perfor-
mance, with the MSE variant excelling on the ETS dataset
and the combined loss function variant performing best on
the FI dataset. Additionally, ablation tests and model in-
terpretations were performed on text, acoustic, and visual
modalities, indicating that a performance-fairness trade-off
exists when incorporating nonverbal modalities. For instance,
the trade-off is evident when comparing the use of only the
text modality against the combined use of text, acoustic, and
visual modalities.

In summary, the contributions are as follows:
1) Propose MAG-BERT-ARL to address fairness in au-

tomated video interview assessment systems without
relying on sensitive data,

2) Improve the ARL approach as an automatic debiasing
method in the multimodal interview assessment do-
main.

The rest of this paper is organized as follows: Section
II explains previous related works, Section III introduces
MAG-BERT-ARL, the proposed method for assessing video
interviews. Section IV presents the experiment details of this

The interviewee accesses the interview1

Interviewee: Well, I made a conscious effort to focus
solely on the work at hand. That meant ...

The system prompts a question2

The interviewee records the answer3

The system grades the answer4

System prompt: Please tell us about a time when you
had to work with someone you did not especially like
or get along with. How did you interact ...

System output:
Hiring score

FIGURE 1. Automated Video Interview Assessment Systems in Practice

research. Section V presents the results and analyses. Section
VI presents the summary.

II. RELATED WORKS
This section presents advancements in automating video in-
terviews, fair automated video interview assessment systems,
and fairness without demographics methods.

A. AUTOMATED VIDEO INTERVIEW ASSESSMENT
SYSTEMS
The development of automated video interview assessment
systems began when [25] developed a system for auto-
matic personality recognition using support vector machines
(SVM) and lexical features. Nguyen et al. [26] developed
a system for inferring hirability in face-to-face interviews
for marketing jobs that utilizes nonverbal cues. However,
it was not until 2016 that these systems were adapted for
asynchronous video interviews [27].
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In asynchronous video interview systems, hiring managers
can configure questions for the system to display on the
candidate’s screen [28]. During the interview, candidates are
prompted to answer these questions, with some preparation
time allotted [29]. The candidates’ responses are recorded
via camera. Subsequently, the system assesses their answers
and personalities, assigning a score that determines whether
the candidate will advance to the next hiring stage. This
mechanism is illustrated in Fig. 1.

Several previous studies on automated video interview
assessment systems have utilized different architectures and
methods for embedding and fairness mitigation. Singhania et
al. [15] introduced a technique for assessing video interviews
with fairness considerations, employing linear regression
with L-2 regularization. Similarly, [11] proposed a method
utilizing data balancing and adversarial learning to mitigate
bias in the same context. Furthermore, [16] presented an
approach leveraging adversarial learning and Wasserstein
distance regularization to address fairness concerns in au-
tomated video interview assessment systems. Specifically,
models developed by [11], [17], [30], and [16] have shown
significant promise in this domain. These studies have been
tested on ETS and FI datasets. Unlike these previous studies,
our research aims to develop an automated video interview
assessment system that does not discriminate and does not
require sensitive attributes. While [11] and [16] focus on
mitigating bias in automated video interview assessment,
our research focuses on enhancing fairness without utilizing
sensitive attributes.

Chen et al. [17] utilized text and acoustic features for
their model, employing bag-of-words feature extraction for
text and PyAudioAnalysis for acoustic features. In contrast,
research by [11] and [15] focused only on acoustic and
visual features. Yan et al. [11] used openSMILE for acoustic
features and VGG-Face, LGBP-TOP, and VGG-VG-19 for
visual features. Singhania et al. [15] applied openSMILE
for acoustic features and OpenFace’s Head Pose and Facial
Action Unit for visual features. Additionally, [30] and [16]
incorporated all three modalities: text, acoustic, and visual
features. Rahman et al. [30] utilized the ALBERT model
for text and a multiple instance learning model for both
acoustic and visual features. Kim et al. [16] combined BERT
for text, PyAudioAnalysis for acoustic, and CCN-LSTM for
visual features. In our research, text features are extracted
using BERT [31], acoustic features are obtained through
eGeMAPS [32], and visual features are derived from Open-
Face [33] to maximize both performance and fairness.

Chen et al. [17] employed a unified method utilizing
clustering and text classification techniques. This model has
demonstrated effectiveness in predicting hiring recommen-
dation scores without utilizing sensitive attributes. However,
it does not address fairness issues in automated video inter-
view assessment systems. Rahman et al. [30] introduced an
approach leveraging integrated gradients [34] and Gradient
SHAP [23], which significantly improved the interpretabil-
ity of the system. Despite these advancements, their model

also does not address fairness issues in automated video
interview assessment systems. Research by [11], [15], and
[16] proposed debiasing approaches, achieving substantial
improvements in fairness metrics. However, these models
utilize sensitive attributes for their approaches.

As reported by [11], [15] and [16], the performance of their
models is sufficient but still not entirely satisfactory, particu-
larly due to their reliance on sensitive attributes for fairness
mitigation. The baseline model in our research adopts MAG-
BERT [18]. To improve fairness performance, our research
incorporates Adversarially Reweighted Learning (ARL) [19]
to the baseline MAG-BERT model with some modifications
in three categories: input type, training strategy, and activa-
tion function type.

B. FAIRNESS WITHOUT DEMOGRAPHICS
To address the ethical and legal obstacles, numerous re-
search has attempted to mitigate bias by eliminating sen-
sitive attributes like gender and race while upholding fair-
ness within the system. One approach to achieving this is
through methods such as fairness without demographics. Ex-
amples of such methods include Distributionally Robust Op-
timization (DRO) [35], which employs distributionally robust
optimization to handle worst-case scenarios across groups,
Adversarially Reweighted Learning (ARL) [19], which fo-
cuses on identifying training errors through an adversarially
reweighted learning approach, Shared Latent Space-Based
Debiasing (SLSD) [36], which uses adversarial learning to
debias latent representations, and transformer without demo-
graphics [37], which focus on debiasing transformers.

Our research employs Adversarially Reweighted Learning
(ARL) [19] to promote fairness without using sensitive at-
tributes. Unlike ARL and similar methods such as DRO [35]
and SLSD [36], which are typically applied to tabular data
like financial information, our research proposes a method to
apply fairness without demographics techniques in the video
domain. By integrating ARL into MAG-BERT, the research
develops MAG-BERT-ARL. This approach extends beyond
transformers without demographics [37], which have been
applied in text and visual modalities, by also incorporating
acoustic modality.

III. METHODS
This research presents an approach that can be applied within
regulatory boundaries. Given the constraint of not having ac-
cess to sensitive attribute, addressing fairness becomes chal-
lenging. In this context, Adversarially Reweighted Learning
(ARL) [19] is utilized as the standard Multi-Layer Perceptron
(MLP) head due to its ability to achieve fairness without
demographics. For the baseline model, MAG-BERT, a model
rooted in the Multimodal Augmentation Gate (MAG) [18], is
utilized. Some changes are applied to ensure the integration
of these two components.

First, traditionally, ARL takes tabular data as input; here,
it is repurposed to utilize the CLS token, known to be the
primary input for the classifier in a typical BERT model [38].
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TABLE 1. Summary of studies with their respective datasets, tasks, debiasing methods, information about the fairness and the usage of sensitive data,
and metrics. Fair-aware indicates whether the model incorporates a debiasing method, marked as true (v) if it does and false (x) if it does not.
Meanwhile, no sensitive data specifies whether the model utilizes sensitive data, such as age, gender, and race, during training and validation, marked
as true (v) if it does not and false (x) if it does.

Authors Dataset Task Debiasing
Method

Fair-
aware

No Sen-
sitive
Data

Metrics

Chen et al. (2017) [17] ETS Classification None x v Precision, Recall, F1
Rahman et al. (2021) [30] ETS Classification None x v Accuracy, AUC Score
Singhania et al. (2020)
[15]

Video dataset Regression Lasso & Ridge
regularization

v x Pearson Correlation Coefficient,
Mean Difference, Mean Absolute
Error, Demographic Parity,
Equalized Odds, Equal
Opportunity, Disparate Impact

Yan et al. (2020) [11] FI Classification Adversarial
learning

v x Accuracy, Demographic Parity,
Equal Accuracy

Kim et al. (2023) [16] Hiring
recommendation,
FI

Regression Wasserstein
regularization,
adversarial
learning

v x Pearson Correlation Coefficient,
Spearman’s Rank Correlation
Coefficient, Strong Pairwise
Demographic Disparity, Strong
Pairwise Equal Opportunity

This adaptation enables the leverage of rich contextual in-
formation encoded by BERT while applying ARL to address
fairness concerns.

Second, the vanishing gradient problem can arise when
training deep neural networks, particularly in scenarios
where the gradient signal diminishes as it propagates back-
ward through layers [39]. To mitigate this issue in MAG-
BERT-ARL, techniques such as batch normalization and skip
connections are utilized [20], [21]. These methods help alle-
viate the vanishing gradient problem by facilitating smoother
gradient flow during training [40].

Third, the choice of activation function plays a crucial
role in the performance of neural networks. In MAG-BERT-
ARL, activation functions that facilitate better gradient flow
are opted for [22]. In this selection, rectified linear units
(ReLU) are preferred over the sigmoid function due to their
demonstrated superior performance in specific cases, while
also addressing the issue of vanishing gradients.

Finally, to comprehend the individual contributions of
input features to a model’s predictions and understand the
model’s functioning, a mathematical framework called Gra-
dient SHAP is utilized [23]. The influence of each input
feature on the model’s output is assessed by this interpretative
approach, emphasizing the isolation of each feature’s impact
[41]. By using Gradient SHAP, the contributions of each
feature to the model’s predictions can be evaluated.

A. MODEL ARCHITECTURE
Fig. 2 presents the proposed MAG-BERT-ARL architec-
ture. Given a video interview, MAG-BERT-ARL predicts the
output hiring recommendation score ŷ. MAG-BERT-ARL
consists of MAG-BERT [18] and ARL [19]. The video is
processed to extract triplets of features: text, acoustic, and
visual. These features are passed as inputs through MAG-
BERT. MAG-BERT processes the input and produces a rep-
resentation Z = [ZCLS, Z1, Z2, ..., ZN]. Subsequently, the
CLS token ZCLS is passed through both the learner and the

adversary of ARL if it is in training mode (when y exists).
The learner outputs logits that are utilized as the model pre-
dictions ŷ, while the adversary generates adversary weights
λ, which are utilized for training the ARL’s loss function,
as in Eq, 8. There are three variants of MAG-BERT-ARL,
each utilizing different loss functions: MAG-BERT-ARL M
applies the Mean Squared Error (MSE) loss function, MAG-
BERT-ARL B applies the binary cross-entropy loss function,
and MAG-BERT-ARL MB combines the MSE and binary
cross-entropy loss functions.

1) MAG-BERT
MAG-BERT, an extension of the BERT model [31], incor-
porates the Multimodal Augmentation Gate (MAG) mecha-
nism. MAG processes three types of inputs: textual, acoustic,
and visual. Each non-textual feature (A, V) is combined with
the text embedding input Z and subjected to attention gating
to generate a relevant information vector, denoted as g, as
described in Eq, 1.

ga = R(Wga[Z;A] + ba)

gv = R(Wgv[Z;V ] + bv)
(1)

Subsequently, a verbal shift vector, H, is formed by inte-
grating non-textual features scaled by their respective vectors
g, following Eq, 2.

H = ga · (WaA) + gv · (WvV ) + bh (2)

The original text input is then adjusted by a factor α
times vector H, as outlined in Eq, 3, where α is determined
by a scaling formula defined in Eq, 4 where β is a hyper-
parameter.

α = min(
||Z||
||H||

β, 1) (3)

Ẑ = Z + αH (4)
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Token (L) Acoustic (A) Visual (V)

Video

BERT Embeddings

CLS ...1L SL2L

...

1Z NZ2Z1A 1V 2A 2V NA NV

Multimodal
Adaptation Gate

Multimodal
Adaptation Gate

Multimodal
Adaptation Gate

BERT Encoder

...CLSZ^ 1Z^ 2Z^ NZ^

...CLSZ
   

1Z
   

2Z
   

NZ
   

y = f  (x)^

f 1

f 2

θf

ReLU

k1

Φk

LearnerAdversary

f 3

Adversarially Reweighted Learning

MAG-BERT

Loss(θ,Φ)Loss(θ,Φ) y

y λ   = 1 + n
k  (x  , y  )Φ i i

Σk  (x  , y  )Φ i i
i

θ

FIGURE 2. MAG-BERT-ARL architecture. Given a video interview, MAG-BERT-ARL predicts the hiring recommendation score.

This augmented representation Ẑ enriches the initial text
input by incorporating not only the spoken words but also
associated nonverbal cues.

MAG-BERT extends the MAG framework into BERT.
In MAG-BERT, MAG is integrated at a specific layer of

BERT, positioned before the BERT encoder and after the
BERT embedding. Similar to BERT, the operations within
MAG-BERT commence with the token sequence L =
[CLS,L1, L2, ..., LS], where CLS is a CLS token utilized
for class label prediction. Subsequently, the sequence L
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passes through the BERT embedding, producing Z =
[ZCLS, Z1, Z2, ..., ZN], which represents the text embedding.
Subsequently, embedding Z is paired with other non-textual
feature (A, V ), forming a triplet (Z,A, V ). This triplet is
passed through the MAG which outputs Ẑ, the unified rep-
resentation of all multimodalities. Finally, the unified repre-
sentation Ẑ is fed into the BERT encoder, yielding the output
Z.

2) Adversarially Reweighted Learning
Adversarially Reweighted Learning (ARL) consists of two
components: an adversary and a learner. The learner, rep-
resented by a feed-forward network fθ, aims to minimize a
specified loss function ℓ, typically cross-entropy loss, during
training. The learner produces logits ŷ by processing the
ZCLS output from the MAG-BERT, as in Eq, 5.

ŷ = fθ(ZCLS) (5)

Each feed-forward network within the learner fθ consists
of a linear layer, a dropout layer, a layer normalization, and
a ReLU activation function. The network processes an input
x through the following steps: initially, x is passed through
the linear layer, where it is multiplied by a weight matrix w
and summed with a bias vector b, followed by the dropout
layer, resulting in x̂. This initial input x is also propagated
through skip connections, bypassing the linear and dropout
layers, and is summed with x̂. Both the initial input and
the output x̂ then undergo post-layer normalization, resulting
in x. Finally, the normalized output x is passed through
the ReLU activation function, yielding the logits ŷ, which
represent the model’s predictions.

Meanwhile, the adversary, also represented by a feed-
forward network kϕ, seeks to maximize penalties for
computationally-identifiable regions with elevated loss by
assigning a weight vector λϕ(xi, yi), as shown in Eq, 6,
thereby maximizing the loss.

λϕ(xi, yi) = 1 + n · kϕ(xi, yi)∑n
i=1 kϕ(xi, yi)

(6)

Each feed-forward network within the adversary kϕ con-
sists of a linear layer, a dropout layer, and a layer normal-
ization. The process mirrors that of the learner. The network
processes an input x through the following steps: first, x is
passed through the linear layer, where it is multiplied by a
weight matrix w and summed with a bias vector b, followed
by the dropout layer, resulting in x̂. The initial input x is also
propagated through skip connections, bypassing the linear
and dropout layers, and summed with x̂. Both the initial
input and the output x̂ then undergo post-layer normaliza-
tion, resulting in x. This process is repeated at least once.
Subsequently, the normalized output x is passed through a
ReLU activation function, resulting in X . Finally, the output
X , along with the target labels y, is used to calculate the
adversary weight λ.

B. MODEL TRAINING
The training process for MAG-BERT-ARL involves opti-
mizing the parameters of all its components: MAG-BERT
hθ,ϕ, the learner fθ, and the adversary kϕ, where θ and
ϕ are the parameters that will be optimized. This process
comprises two distinct stages. The first stage, referred to
as pretraining, involves training only the MAG-BERT and
learner components. During this phase, the adversary weight
λ does not influence the training process, and the model
focuses only on minimizing the prediction loss J(θ, ϕ) as
defined in Eq, 7.

J(θ, ϕ) = min
θ

n∑
i=1

ℓ(hθ,ϕ(xi), yi) (7)

In the second stage, the adversary is also included in the
training process. This stage employs a minimax optimization
approach to balance the parameters of the learner and the
adversary. The learner aims to minimize the prediction loss,
while the adversary seeks to maximize the penalty for regions
with high computationally-identifiable loss. In response, the
learner adapts its parameters to minimize loss in regions iden-
tified by the adversary as having high loss, thereby promoting
fairness. This iterative process facilitates the optimization of
fairness across different identifiable groups by dynamically
adjusting the distribution of training samples and can be
formally expressed as shown in Eq, 8. The detailed training
procedure for MAG-BERT-ARL is outlined in Algorithm 1.

J(θ, ϕ) = min
θ

max
ϕ

n∑
i=1

λϕ(xi, yi) · ℓ(hθ,ϕ(xi), yi) (8)

IV. EXPERIMENTS
This section presents details of the data used, data preparation
steps, model implementation, performance evaluation met-
rics, and the approach for classifying absent gender labels
and interpreting the model’s predictions.

A. DATASET
1) Educational Testing Service Dataset
The Educational Testing Service (ETS) Dataset [17] com-
prises 1,891 recordings capturing human responses to
prompts within a simulated interview environment facilitated
by a computer program. Each interviewee provides answers
to a predetermined set of questions, with their video record-
ings subsequently annotated with various labels. Specifically,
each interviewee is assigned six labels: a hiring score (hs) and
the Big Five personality traits, namely agreeableness (ag),
extraversion (ex), conscientiousness (co), emotional stability
(em), and openness (op). These labels are assessed by five
raters using a 7-point Likert scale, with 1 indicating “strongly
disagree” and 7 indicating “strongly agree”. For the purposes
of this research, only the hiring score (hs) is utilized. The
dataset is divided into a training set consisting of 1,519
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Algorithm 1 Training Procedure for MAG-BERT-ARL
Require: Dataset ((Xt, Xa, Xv) ∈ X , Segment ID, Y )
Ensure: Trained MAG-BERT hθ,ϕ, learner fθ, and adversary kϕ

1: Initialize MAG-BERT hθ,ϕ with random parameters
2: Initialize learner fθ with random parameters
3: Initialize adversary kϕ with random parameters
4:
5: Set hyperparameters batch size m, epoch e, pretrain steps p, learning rates of ηlearner and ηadversary
6:
7: for each epoch in e do
8: for each step s and batch B in dataset do
9: Extract representations in latent space hθ,ϕ(B) from each batch

10: Compute learner output fθ(hθ,ϕ(B)CLS) using representation CLS token as input
11: if step s > pretrain steps p then
12: Compute adversary output kϕ(hθ,ϕ(B)CLS) using representation CLS token as input
13: Compute adversary weight: λϕ(xi, yi)← 1 + n · kϕ(xi,yi)∑n

i=1 kϕ(xi,yi)

14: Compute learner loss: Llearner ←
∑n

i=1 λϕ(xi, yi) · ℓ(hθ,ϕ(xi), yi)
15: Update θ with gradient descent: θ ← θ − ηlearner∇θ Llearner

16: Compute adversary loss: Ladversary ←
∑n

i=1−λϕ(xi, yi) · ℓ(hθ,ϕ(xi), yi)
17: Update ϕ with gradient descent: ϕ← ϕ− ηadversary∇ϕ Ladversary

18: else
19: Compute learner loss: Llearner ←

∑n
i=1 ℓ(hθ,ϕ(xi), yi)

20: Update θ with gradient descent: θ ← θ − ηlearner∇θ Llearner

21: end if
22: end for
23: end for

TABLE 2. Educational Testing Service (ETS) & First Impressions (FI)
Datasets Summary

Description Dataset
ETS FI

Average Video Duration 2-3 minutes 15 seconds
Total Video Duration 78 hours ±41.6 hours
Annotators 5 2500
Interviewees 260 3000
Gender Annotation Unavailable Available
Hiring Score (hs) 1 ≤ hs ≤ 7, hs ∈ N 0 ≤ hs ≤ 1, hs ∈ R
Decision Threshold 5.6 0.5
Train Dataset Size 1215 6000
Test Dataset Size 372 2000
Evaluation Dataset Size 304 2000
Total Dataset Size 1891 10000

recordings and a test set containing 300 recordings. Addition-
ally, a validation dataset is created by extracting the last 20%
of the training dataset and the remaining 80% becomes the
training dataset. The summary of the ETS dataset is presented
in Table 2.

2) First Impressions Dataset
The First Impressions (FI) Dataset [24] comprises 10,000
video segments sourced from over 3,000 distinct YouTube
videos featuring individuals speaking in English. These video
clips are annotated with various attributes including gen-
der, ethnicity, Big Five personality traits, and a continuous
variable known as the interview score, which indicates the

likelihood of the subject being invited for a job interview.
These annotations are assessed on a scale ranging from 0 to 1.
Notably, for the purposes of this research, only the interview
score is utilized. The dataset is partitioned into three subsets:
a 60% training set, a 20% validation set, and a 20% testing
set. The summary of the FI dataset is presented in Table 2.

B. FEATURE EXTRACTION
Many modalities can be extracted from a video. Experiments
were conducted on the baseline MAG-BERT model [18]
with various combinations of features, including eGeMAPS
acoustic feature sets [32], OpenFace visual subfeature sets
[33]—such as gaze, facial landmarks, action units, and all
feature sets—and PyAudioAnalysis acoustic feature sets
[42], to identify the optimal configuration for a robust and nu-
anced evaluation of candidates during automated interviews.
From the experiments, eGeMAPS and OpenFace have shown
to yield the best performance in trade-offs between perfor-
mance and bias and both are utilized to extract acoustic and
visual features, respectively. For the text features, whisper-
timestamped [43]–[45] is utilized.

1) Text Features
whisper-timestamped [43]–[45] is an extension of the Whis-
per Automated Speech Recognition (ASR) system, incor-
porating word-level timestamp predictions for each tran-
scribed word. When used for audio transcription, Whisper-
timestamped generates an output containing both text and
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TABLE 3. eGeMAPS Feature Index

Index (i) Feature Length
0-9 Frequency (F0) 10

10-19 Loudness 10
20-21 Spectral 2
22-29 MFCC 8
30-31 Jitter 2
32-33 Shimmer 2
34-35 HNR 2
36-39 Logarithmic Harmonic 4
40-57 Formant (F1-3) 18
58-59 Alpha Ratio 2
60-61 Hammarberg 2
62-65 Slope Voiced 4
66-67 Spectral Flux 2
68-75 MFCC Voiced 8

76 Alpha Ratio Unvoiced 1
77 Hammarberg Unvoiced 1

78-79 Slope Unvoiced 2
80 Spectral Flux Unvoiced 1

81-86 Voiced Segment 6
87 Equivalent Sound Level 1

Total 88

corresponding speech segments. Each segment includes a list
of words with associated timestamps, accurate to two decimal
places, along with a confidence score for each word.

2) Acoustic Features
eGeMAPS [32] is a minimalistic acoustic feature set that
serves as a basic standard acoustic parameter set for various
areas of automatic voice analysis. eGeMAPS contains 88
parameters of acoustic features, such as frequency, spectral,
loudness and pitch. A detailed breakdown of these 88 acous-
tic parameters is presented in Table 3.

3) Visual Features
OpenFace [33] is a free-to-use toolkit to extract facial fea-
tures for facial behaviour analysis. OpenFace is able to ex-
tract facial features for facial landmark location, head pose,
face shape, eye gaze, and facial action unit. From OpenFace,
340 parameters of facial landmark location, 6 parameters
of head pose, 40 parameters of face shape, 288 parameters
of eye gaze, and 35 parameters of facial action unit can be
extracted, totaling 709 parameters. A detailed breakdown of
these parameters is presented in Table 4.

C. PREPROCESSING
Prior to inputting the dataset into the machine learning
model, it is necessary to preprocess the data into a compatible
format. This involves utilizing whisper-timestamped [43]–
[45] to transcribe the interviewee’s speech from audio record-
ings into text, while also extracting timestamps correspond-
ing to each word uttered in the speech. These timestamps
serve as markers, facilitating subsequent alignment of spoken
words with their associated visual and acoustic characteris-
tics. Additionally, the words are tokenized using the BERT
tokenizer [31].

Subsequently, the timestamps are employed to partition the
audio recording into segments delineated by word bound-

TABLE 4. OpenFace Feature Index

Group Index (i) Feature Length

Eye Gaze

0-2 Leftmost Eye Gaze 3
3-5 Rightmost Eye Gaze 3
6-7 Eye Gaze Direction 2

8-119 Eye Landmark 2D 112
120-287 Eye Landmark 3D 168

Head Pose 288-290 Head Location 3
291-293 Rotation 3

Facial Landmark 294-429 Landmark 2D 136
430-633 Landmark 3D 204

Face Shape 634-639 Rigid Face Shape 6
640-673 Non-rigid Face Shape 34

Facial Action Unit 674-708 Facial Action Unit 35
Total 709

Word Start End

Well 2.02 3.78

I 4.78 4.84

... ... ...

Video Audio

Word-level
Timestamp

Segmented Audio

Word-level
Acoustic Features

Frame-level 
Visual Features

Word-level 
Visual Features

OpenFace
FeatureExtractor

Extract Audio

Whisper-
timestamped

Preprocessed
Dataset

Visual

Text

Acoustic

eGeMAPS
BERT Tokenizer

FIGURE 3. Dataset Preprocessing Outline

aries, thereby generating distinct snippets for each uttered
word. Within each snippet, acoustic features are extracted
using eGeMAPS [32], capturing attributes such as pitch,
energy, and speech rate. This process yields a feature vector
comprising 88 dimensions for each spoken word.

Subsequently, OpenFace [33] is employed to capture vi-
sual characteristics such as posture and gestures. Unlike
audio processing, the entire video is utilized to extract visual
features, resulting in a feature vector of 709 dimensions. The
feature vector for each spoken word is obtained by locating
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the frame that corresponds to each word in the visual features.
After extracting and aligning features from each modality,

they are consolidated into a cohesive dataset. Each entry in
this dataset encapsulates a succinct record consisting of three
elements: a triplet of textual, acoustic, and visual features (L,
A, V), the corresponding label for each data point y, and the
segment ID. This procedure, as shown in Fig. 3, is iterated
across the training, validation, and testing datasets.

D. HYPERPARAMETER TUNING
In this work, the MAG-BERT-ARL framework, comprising
MAG-BERT and Adversarially Reweighted Learning (ARL),
was adopted. Existing implementations of MAG-BERT and
ARL can be found [18], [19]. However, the reproduced
PyTorch implementation of ARL was used to maintain con-
sistency, as MAG-BERT is also implemented in PyTorch
[46].

The integration process began with replacing the linear
MLP head in MAG-BERT with ARL for sequence clas-
sification. This was the only modification required on the
MAG-BERT side. For the ARL component, skip connections
and batch normalization were implemented. This involved
modifying the hidden layers in both the learner and the
adversary by adding a dropout layer (p = 0.5) and a layer
norm after the linear layer. Additionally, all hidden layer
sizes were adjusted to match the input or embedding size to
ensure compatibility with the CLS token from MAG-BERT
via skip connections. A post-norm configuration of batch
normalization was applied by passing the input through the
linear and dropout layers, subsequently combining it with
the unmodified input before applying layer norm. This was
implemented in all layers except the first. Finally, the sigmoid
function in the adversary was replaced with ReLU.

For MAG-BERT, the optimal configuration outlined in the
original paper was adhered to. For ARL, the learner was
constructed as a three-layer feed-forward network, while the
adversary was formulated as a one-layer feed-forward net-
work with ReLU activation functions. The remaining training
hyperparameters are presented in Table 5.

During training on the ETS dataset, both training and
validation batch sizes were set to m = 64 and the maximum
sequence length to q = 256. For the FI dataset, both training
and validation batch sizes were set to m = 128 and the
maximum sequence length to q = 176. The model was
trained on all datasets for 200 epochs without early stopping.
However, the baseline model employed early stopping, with
a patience parameter set to 2. The AdamW optimizer was
used for training, with learning rates of ηlearner = 10−5

and ηadversary = 10−5. The optimizer was separated for the
learner and the classifier.

E. EVALUATION METRICS
Metrics for both performance and fairness are considered
in the evaluation. For performance, both classification and
regression metrics are assessed. Regression metrics are cal-
culated based on the model’s predictions and the ground truth

hiring scores. For classification metrics, a decision threshold
specific to each dataset is applied to convert continuous
values into binary classification labels.

1) Classification Evaluation
Accuracy, precision, recall, and F1 score are chosen for the
classification task. Higher accuracy, precision, recall, and F1
score signify better model performance in terms of accurately
predicting the interviewee’s suitability for the job.

For positive class predictions, the right prediction is called
true positive (TP), while the wrong one, that the truth was
actually negative class, is called false positive (FP). For
negative class predictions, the right prediction is called true
negative (TN), while the wrong one, that the truth was
actually positive class, is called false negative (FN). These
terms are important since they are used a lot in classification
metrics.

Accuracy is the percentage of correct classifications. If
accuracy is 1, it implies that the model prediction always
predict right. Accuracy is defined as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(9)

Precision or confidence is the percentage of correct clas-
sification among the positive class predictions. If precision
is 1, it implies that the model always predict right when it
comes to predicting the positive class. Precision is defined as
follows:

Precision =
TP

TP + FP
(10)

Recall or sensitivity is the percentage of correct classifi-
cation among the actual positive instances. If recall is 1, it
implies that the model always catch up on actual positive
instances. Recall is defined as follows:

Recall =
TP

TP + FN
(11)

F-score is harmonic mean between precision and recall. F-
score is defined as follows:

F-score =
(1 + β2)× Precision× Recall
(β2 × Precision) + Recall

(12)

In this equation, β is a hyperparameter. Higher β implies
more importance to recall. When β = 1, precision and recall
is of the same importance. In this case, F-score is also called
F1 score.

2) Regression Evaluation
Furthermore, the Pearson correlation coefficient rp and root
mean squared error (RMSE) between the predicted hiring
scores and the actual hiring scores are calculated for the re-
gression task. A high positive Pearson correlation coefficient
rp value indicates that the model’s predictions tend to align
with the human judgments, while a low RMSE value signifies
that the model’s predictions are close to the actual scores.

Pearson correlation coefficient (rp) is a parametric mea-
sure that assesses the linear relationship between two random
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TABLE 5. Hyperparameters for Training

Hyperparameter Value for ETS Dataset Value for FI Dataset
Max Seq Length 256 176
Train Batch Size 64 128
Num Labels 1 1
Dev Batch Size 64 128
N Epochs 200 200
Beta Shift 1.0 1.0
Dropout Prob 0.5 0.5
Model bert-base-uncased bert-base-uncased
Tokenizer bert-base-uncased bert-base-uncased
Learning Rate 10−5 10−5

Gradient Accumulation Step 1 1
Warmup Proportion 0.1 0.1
Seed 8 8
Learning Rate Adversary 10−5 10−5

Pretrain Steps 6 6

variables [47]. It ranges from +1, indicating perfect positive
correlation, to -1, indicating perfect negative correlation, with
0 representing no linear relationship. Pearson correlation is
defined as follows:

rp =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
∑n

i=1(yi − y)2
(13)

In this context, x and y represent the variables for which
the correlation is to be calculated, while x and y denote the
respective means of x and y.

Root mean squared error (RMSE) is the square root of the
mean squared difference between predictions and true values.
If RMSE is 0, it implies that the predictions and true values
match exactly. RMSE is defined as follows:

RMSE =

√√√√ 1

n

n∑
i=1

(x− y)2 (14)

3) Fairness Evaluation
For fairness metrics, demographic parity (DP) (as in Eq, 15),
equalized odds (EO) (as in Eq, 16), and equal accuracy
(EA) (as in Eq, 17) metrics are utilized to assess fairness in
the model’s predictions across different demographic groups.
This ensures that the model’s predictions are independent of
sensitive attributes such as race, gender, or age.

Demographic parity evaluates whether the proportion of
positive outcomes (e.g., job offers) is the same across dif-
ferent demographic groups [48]. Demographic parity for a
model with prediction ŷ and sensitive attribute A is defined
as follows:

DP = P (ŷ = 1|A = 0)− P (ŷ = 1|A = 1) (15)

If demographic parity holds, that is it is equal to zero, it
implies that the model’s predictions are independent of the
sensitive attribute.

Equalized odds assesses whether the true positive rates
(sensitivity/recall) and false positive rates are the same across
different demographic groups [49]. Equalized odds for a

model with prediction ŷ, true value y, and sensitive attribute
A is defined as follows:

EO = P (ŷ = 1|y = 1, A = 0)− P (ŷ = 1|y = 1, A = 1)
(16)

Unlike demographic parity, equalized odds assess whether
or not the model’s predictions are equally accurate across
different demographic groups.

Equal Accuracy (EA) ensures that the model performs
equally well across different demographic groups [11]. This
means that the estimation error, as measured by a chosen
metric, M, should be similar for all groups. Equal accuracy
for a model with prediction ŷ, true value y, and sensitive
attribute A is defined as follows:

EA = M(y, ŷ|A = 0)−M(y, ŷ|A = 1) (17)

If the Equal Accuracy (EA) is zero, it implies that the
model’s prediction errors are similar across all demographic
groups.

Demographic parity requires that the distribution of pre-
dicted outcomes is consistent across different demographic
groups, while equalized odds additionally demands that the
true positive rates (sensitivity) and false positive rates (speci-
ficity) are equal across these groups. Equal accuracy de-
mands that the overall performance of the model is consistent
across different demographic groups. Note that the sensitive
attribute is only utilized during testing to facilitate the com-
putation of these metrics.

F. GENDER CLASSIFICATION
To assess group fairness between genders in the ETS dataset,
where gender annotations are absent, an automatic gender
classification model was employed to annotate the dataset
with gender labels. A fine-tuned Vision Transformer (ViT)
model from HuggingFace was used to classify each video
as either male or female [50]. The model takes an image as
input and subsequently classifies it as either male or female.
For classifying video interviews in the ETS dataset, one to
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three random frames were extracted from each video using
OpenCV [51] to serve as the image representation for that
particular video. These frames were subsequently classified
using the aforementioned model. Finally, a voting algorithm
was utilized to determine the video’s gender classification
based on the majority label of the frames. It should be noted
that these labels were only utilized for the evaluation of group
fairness metrics within the ETS dataset.

G. INTERPRETATION FRAMEWORK
Similar framework utilized in HirePreter [30] was utilized to
interpret MAG-BERT-ARL. However, Gradient SHAP was
applied to both textual and non-textual features, whereas
HirePreter’s framework utilized Gradient SHAP [23] for
non-textual feature and integrated gradients [34] for textual
feature. The Captum library’s implementation of the Gradient
SHAP primary attribution algorithm was utilized to calculate
Gradient SHAP [52]. The baseline for calculating Gradient
SHAP x̂ was set to a zero matrix for both acoustic and visual
features. For the text features, the baseline was defined as
x̂ = w+α× (x−w), where w and α are matrices filled with
random numbers in the interval [0, 1).

V. RESULTS AND ANALYSES
This section presents the model’s performance in predicting
hiring decisions, fairness related to hiring decisions, impact
of nonverbal features, and insights into factors influencing
the model’s predictions.

A. OVERALL EVALUATION
Table 6 summarizes the ranking results across various models
for fairness, regression, and classification tasks assessed on
ETS and FI dataset. Among the models evaluated, MAG-
BERT-ARL M emerges as a standout performer on the
ETS dataset. This can be attributed to its regression and
classification performance. However, its counterpart, MAG-
BERT-ARL B and MAG-BERT-ARL MB, while exhibiting
sufficient performance, falls slightly short in comparison,
particularly in terms of regression and classification ranking
compared to MAG-BERT-ARL M on the ETS dataset. MAG-
BERT shares the top spot with MAG-BERT-ARL MB in
fairness ranking on the ETS dataset. Notably, all MAG-
BERT-ARL variants ranks higher than the baseline MAG-
BERT model.

On the FI dataset, MAG-BERT-ARL MB emerges as a
standout performer. This can be attributed to its fairness and
classification performance. Conversely, MAG-BERT-ARL M
and MAG-BERT-ARL B secure slightly lower ranks, primar-
ily due to their reduced fairness and classification scores.
Notably, all MAG-BERT-ARL variants perform better than
the baseline MAG-BERT model.

While the overall performance of MAG-BERT-ARL is
better than that of MAG-BERT, it is notable that the top-
ranking variant differs between the two datasets. For the ETS
dataset, MAG-BERT-ARL M is the top performer, while for
the FI dataset, it is MAG-BERT-ARL MB. Fig. 4 depicts

the prediction and dataset distribution of all MAG-BERT-
ARL variants overlaid on the ETS dataset and FI datasets.
The figure suggests that adding binary cross-entropy loss
increases the variance in the model’s predictions. It can
also be observed that the distribution of the ETS dataset is
more skewed compared to the distribution of the FI dataset.
Consequently, more of MAG-BERT-ARL MB’s predictions
for the ETS dataset lie outside its distribution. In contrast,
for the FI dataset, MAG-BERT-ARL MB’s predictions cover
a broader range of the FI dataset, reducing errors that were
previously concentrated around the mean. Therefore, MAG-
BERT-ARL MB performs better on the FI dataset, while
MAG-BERT-ARL M performs better on the ETS dataset.

B. HIRING DECISION PREDICTION
The Pearson correlation coefficient rp evaluation presented in
Table 7 shows that all MAG-BERT-ARL variants improve rp.
MAG-BERT-ARL B achieves the best rp evaluation for both
ETS and FI datasets. The model increases the rp compared
to the baseline MAG-BERT model by 0.05 and 0.17 for both
ETS and FI datasets.

Root mean squared error (RMSE) evaluation shows MAG-
BERT-ARL models provide sufficient RMSE results. MAG-
BERT-ARL B model has worst compared to any model for
both ETS and FI datasets. MAG-BERT-ARL M achieves
the best RMSE evaluation for ETS dataset, improving the
RMSE by 0.12 compared to the baseline MAG-BERT model.
Different results are found in FI dataset. In this case, RMSE
for MAG-BERT-ARL M (0.16) is worse than MAG-BERT-
ARL MB (0.14) which gives the best RMSE evaluation.
MAG-BERT-ARL MB achieves the best RMSE evaluation
for FI dataset, improving the RMSE by 0.05 compared to the
baseline MAG-BERT model.

The overall performance of the models is calculated using
the rank (Rank column) of the regression ranks average
(Avg column) presented in Table 7. For both ETS and FI
datasets, all MAG-BERT-ARL variants rank higher than
the baseline MAG-BERT model. For ETS dataset, the best
model is MAG-BERT-ARL M with a regression ranks av-
erage value of 1.5, followed by model MAG-BERT-ARL B
and MAG-BERT-ARL MB. For FI dataset, the best model
is MAG-BERT-ARL MB with a regression ranks average
value of 1.75, followed by model MAG-BERT-ARL M.
The best model MAG-BERT-ARL M and MAG-BERT-ARL
MB are both a MAG-BERT-ARL model that apply MSE
loss function and MSE combined with binary cross entropy
loss function, respectively. There is no reported regression
performance for the [17] and [11] model, which is marked
with dashes.

The accuracy (Acc) evaluation presented in Table 8 shows
that all MAG-BERT-ARL variants, except MAG-BERT-ARL
B for the ETS dataset, improve accuracy. The MAG-BERT-
ARL M variant achieves the best accuracy evaluation for the
ETS dataset, improving accuracy by 0.08 compared to the
baseline MAG-BERT model. Conversely, for the FI dataset,
the accuracy for the MAG-BERT-ARL M variant (0.58) is
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TABLE 6. Ranking results for fairness, regression, and classification. Fairness rank is the rank of the average rank of the model fairness evaluation
score, Regression rank is the rank of the average rank of the model regression evaluation score, Classification rank is the rank of the average rank of
the model classification evaluation score, Overall rank is the rank of the average rank of Fairness rank, Regression rank, and Classification rank.
MAG-BERT-ARL M is a MAG-BERT-ARL model that applies MSE loss function, MAG-BERT-ARL B is a MAG-BERT-ARL model that applies binary
cross-entropy loss function, and MAG-BERT-ARL MB is a MAG-BERT-ARL model that applies MSE combined with binary cross entropy loss function.

Model Fairness Rank ↓ Regression Rank ↓ Classification Rank ↓ Overall Rank ↓

ETS Dataset
MAG-BERT 1.5 4.0 4.0 4.0
MAG-BERT-ARL M 2.0 1.0 1.0 1.0
MAG-BERT-ARL B 3.0 3.0 2.5 3.0
MAG-BERT-ARL MB 1.5 2.0 2.5 2.0

FI Dataset
MAG-BERT 4.0 4.0 4.0 4.0
MAG-BERT-ARL M 2.5 3.0 2.0 3.0
MAG-BERT-ARL B 2.5 1.5 3.0 2.0
MAG-BERT-ARL MB 1.0 1.5 1.0 1.0

(a) MAG-BERT-ARL M; ETS Dataset

(d) MAG-BERT-ARL M; FI Dataset

(b) MAG-BERT-ARL B; ETS Dataset

(e) MAG-BERT-ARL B; FI Dataset

(c) MAG-BERT-ARL MB; ETS Dataset

(f) MAG-BERT-ARL MB; FI Dataset

FIGURE 4. Distribution of MAG-BERT-ARL prediction laid on ETS and FI Datasets. The blue-colored distribution represents the actual values, while the
red-colored distribution represents the model’s predictions. The top distribution represents the ETS dataset, while the bottom distribution corresponds
to the FI dataset. From left to right, the distributions are shown for MAG-BERT-ARL M, MAG-BERT-ARL B, and MAG-BERT-ARL MB.

worse than that of the MAG-BERT-ARL B and MAG-BERT-
ARL MB variants (0.66), which provide the best accuracy
evaluation. The MAG-BERT-ARL B and MAG-BERT-ARL
MB variants achieve the best accuracy evaluation for the FI
dataset, improving accuracy by 0.17 compared to the baseline
MAG-BERT model. However, any of the MAG-BERT-ARL
variants demonstrate inferior performance compared to the
models presented by [11], [30], and [16], although there are
slight differences in [30]’s and [16]’s datasets.

The precision (Prec) evaluation shows that all MAG-
BERT-ARL variants outperform the baseline MAG-BERT
model. The MAG-BERT-ARL B variant achieves the best
precision evaluation for the ETS dataset, increasing precision
by 0.39 compared to the baseline MAG-BERT model. The
MAG-BERT-ARL B and MAG-BERT-ARL M variants show
higher precision evaluation (0.72 and 0.66, respectively)
compared to the model presented by [17] (0.65). For the
FI dataset, the MAG-BERT-ARL B and MAG-BERT-ARL

MB variants achieve the best precision evaluation, increasing
precision by 0.06 compared to the baseline MAG-BERT
model.

The recall (Rec) evaluation shows that all MAG-BERT-
ARL variants, except MAG-BERT-ARL B for the ETS
dataset, improve the F1 score. The MAG-BERT-ARL M
variant achieves the best recall evaluation for the ETS dataset,
increasing it by 0.08 compared to the baseline MAG-BERT
model. The MAG-BERT-ARL M variant also shows higher
recall evaluation (0.66) compared to the model presented
by [17] (0.65). For the FI dataset, the MAG-BERT-ARL B
and MAG-BERT-ARL MB variants achieve the best recall
evaluation, increasing recall by 0.17 compared to the baseline
MAG-BERT model.

The evaluation of the F1 score demonstrates that all vari-
ants of MAG-BERT-ARL surpass the baseline MAG-BERT
model. Notably, MAG-BERT-ARL M exhibits the highest
F1 score improvement in the ETS dataset, increasing the F1
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TABLE 7. Regression results for ETS and FI datasets. rp is the Pearson correlation coefficient (higher scores are better), RMSE is root mean squared
error (lower scores are better), Avg is the average rank of the model regression evaluation score, Rank is the rank of Avg. MAG-BERT-ARL M is a
MAG-BERT-ARL model that applies MSE loss function, MAG-BERT-ARL B is a MAG-BERT-ARL model that applies binary cross-entropy loss function,
and MAG-BERT-ARL MB is a MAG-BERT-ARL model that applies MSE combined with binary cross entropy loss function.

Model Metrics Regression Rank

rp ↑ RMSE ↓ rp ↓ RMSE ↓ Avg ↓ Rank ↓

ETS Dataset
ETS Dataset 1.00 0.00
Chen et al. (2017) - -
MAG-BERT 0.43 0.95 4.0 3.0 3.50 4.0
MAG-BERT-ARL M 0.53 0.83 2.0 1.0 1.50 1.0
MAG-BERT-ARL B 0.59 4.38 1.0 4.0 2.50 2.5
MAG-BERT-ARL MB 0.48 0.91 3.0 2.0 2.50 2.5

FI Dataset
FI Dataset 1.00 0.00
Yan et al. (2020) - -
MAG-BERT 0.23 0.19 4.0 3.0 3.50 4.0
MAG-BERT-ARL M 0.38 0.16 2.5 2.0 2.25 2.0
MAG-BERT-ARL B 0.40 1.33 1.0 4.0 2.50 3.0
MAG-BERT-ARL MB 0.38 0.14 2.5 1.0 1.75 1.0

TABLE 8. Classification results for ETS and FI datasets. Acc is accuracy (higher scores are better), Prec is precision (higher scores are better), Rec is
recall (higher scores are better), F1 is F1 score (higher scores are better), Avg is the average rank of the model classification evaluation score, Rank is
the rank of Avg.

Model Metrics Classification Rank

Acc ↑ Prec ↑ Rec ↑ F1 ↑ Acc ↓ Prec ↓ Rec ↓ F1 ↓ Avg ↓ Rank ↓

ETS Dataset
ETS Dataset 1.00 1.00 1.00 1.00
Chen et al. (2017) - 0.65 0.65 0.65
MAG-BERT 0.58 0.33 0.58 0.42 3.0 4.0 3.0 4.0 3.50 4.0
MAG-BERT-ARL M 0.66 0.66 0.66 0.66 1.0 2.0 1.0 1.0 1.25 1.0
MAG-BERT-ARL B 0.53 0.72 0.53 0.61 4.0 1.0 4.0 3.0 3.00 3.0
MAG-BERT-ARL MB 0.63 0.64 0.63 0.64 2.0 3.0 2.0 2.0 2.25 2.0

FI Dataset
FI Dataset 1.00 1.00 1.00 1.00
Yan et al. (2020) 0.92 - - -
MAG-BERT 0.49 0.60 0.49 0.54 4.0 4.0 4.0 4.0 4.00 4.0
MAG-BERT-ARL M 0.58 0.62 0.58 0.60 3.0 3.0 3.0 3.0 3.00 3.0
MAG-BERT-ARL B 0.66 0.66 0.66 0.66 1.5 1.5 1.5 1.5 1.50 1.5
MAG-BERT-ARL MB 0.66 0.66 0.66 0.66 1.5 1.5 1.5 1.5 1.50 1.5

score by 0.24 compared to the baseline and 0.01 compared to
the Chen et al. (2017) model. In the FI dataset, both MAG-
BERT-ARL B and MAG-BERT-ARL MB variants achieve
superior F1 score, increasing it by 0.12 relative to the baseline
MAG-BERT model.

The overall performance of the models is calculated using
the rank (Rank column) of the classification ranks average
(Avg column) presented in Table 8. For both the ETS and
FI datasets, all MAG-BERT-ARL variants rank higher than
the baseline MAG-BERT model. For the ETS dataset, the
best model is the MAG-BERT-ARL M variant, with a clas-
sification ranks average value of 1, followed by the MAG-
BERT-ARL B variant. For the FI dataset, the best models are
the MAG-BERT-ARL B and MAG-BERT-ARL MB variants,
with a classification ranks average value of 1.5, followed by
the MAG-BERT-ARL M variant. The best models, MAG-
BERT-ARL M, MAG-BERT-ARL B, and MAG-BERT-ARL
MB, apply the MSE loss function, binary cross-entropy loss

function, and the MSE combined with binary cross-entropy
loss function, respectively.

C. GROUP FAIRNESS
The demographic parity (DP) evaluation presented in Ta-
ble 9 shows that all MAG-BERT-ARL variants falls short
of matching the DP evalution of the baseline MAG-BERT
model in ETS dataset. Conversely, all MAG-BERT-ARL
variants shows lower DP evaluation compared to the baseline
MAG-BERT model in the FI dataset. For the ETS dataset,
the MAG-BERT-ARL MB variant achieves a lower DP eval-
uation than ETS dataset and out of all MAG-BERT-ARL
variants, decreasing DP by 0.017 compared to the DP evalu-
ation of the ETS dataset. For the FI dataset, the MAG-BERT-
ARL MB variant achieves the best DP evaluation for the
ETS dataset, decreasing it by 0.016 compared to the baseline
MAG-BERT model. The MAG-BERT-ARL MB variant also
shows lower DP evaluation (0.001) compared to the DP
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TABLE 9. Fairness performance results for ETS and FI datasets. DP is demographic parity (lower scores are better), EO is equalized odds (lower scores
are better), EA is equal accuracy (lower scores are better), Avg is the average rank of the model fairness evaluation score, Rank is the rank of Avg.

Model Metrics Fairness Rank

DP ↓ EO ↓ EA ↓ DP ↓ EO ↓ EA ↓ Avg ↓ Rank ↓

ETS Dataset
ETS Dataset 0.029 0.000 0.000
Chen et al. (2017) - - -
MAG-BERT 0.000 0.000 0.131 1.0 1.0 3.0 1.67 1.5
MAG-BERT-ARL M 0.072 0.117 0.037 3.0 3.0 2.0 2.67 2.0
MAG-BERT-ARL B 0.080 0.137 0.197 4.0 4.0 4.0 4.00 3.0
MAG-BERT-ARL MB 0.012 0.063 0.019 2.0 2.0 1.0 1.67 1.5

FI Dataset
FI Dataset 0.011 0.000 0.000
Yan et al 2020 0.002 - 0.001
MAG-BERT 0.017 0.022 0.032 4.0 1.0 4.0 3.00 4.0
MAG-BERT-ARL M 0.006 0.024 0.010 3.0 2.0 3.0 2.67 2.5
MAG-BERT-ARL B 0.002 0.085 0.007 2.0 4.0 2.0 2.67 2.5
MAG-BERT-ARL MB 0.001 0.036 0.004 1.0 3.0 1.0 1.67 1.0

evaluation of FI dataset (0.011) and model presented by [11]
(0.002).

The equalized odds (EO) evaluation shows no improve-
ment for both ETS and FI datasets. All MAG-BERT-ARL
variants shows higher EO evaluation compared to the base-
line MAG-BERT model in both ETS and FI datasets. There
is no reported EO evaluation for the [11] model, which is
marked with dashes.

The evaluation of the equal accuracy (EA) demonstrates
that all variants of MAG-BERT-ARL, except MAG-BERT-
ARL B for the ETS dataset, surpass the baseline MAG-
BERT model. The MAG-BERT-ARL MB variant provides
the lowest EA evaluation for both ETS and FI datasets. The
MAG-BERT-ARL MB variant decreases the DP compared to
the baseline MAG-BERT model by 0.112 and 0.028 for both
ETS and FI datasets.

The overall performance of the models is calculated using
the rank (Rank column) of the fairness ranks average (Avg
column) presented in Table 9. For both the ETS and FI
datasets, all MAG-BERT-ARL variants rank comparable to
or higher than the baseline MAG-BERT model. For the ETS
dataset, MAG-BERT-ARL MB ties for first place in the
overall fairness ranking alongside the baseline MAG-BERT
model, with a fairness ranks average value of 1.5, followed by
the MAG-BERT-ARL M variant. For the FI dataset, the best
model is the MAG-BERT-ARL MB variant, with a fairness
ranks average value of 1, followed by the MAG-BERT-ARL
M and MAG-BERT-ARL B variants. The best models, MAG-
BERT-ARL M and MAG-BERT-ARL B, apply the MSE loss
function and binary cross-entropy loss function, respectively.

D. ABLATION TEST ON MULTIMODALITIES
To evaluate the importance of each modality within the
model, an ablation test was performed. The evaluation of
fairness, classification, and regression metrics was conducted
for four distinct combinations of three modalities: text (T),
text and acoustic (T+A), text and visual (T+V), and text,
acoustic, and visual (T+A+V). These combinations were

assessed on the ETS dataset [17] using the MAG-BERT-ARL
model.

Findings from the ETS dataset in Table 10 indicate that
MAG-BERT-ARL with only the text modality (T) performed
the highest in fairness metrics. The addition of the acoustic
modality (A) leads to a significant improvement in classi-
fication evaluation metrics. However, it results in a decline
in both fairness and regression evaluation metrics. Similarly,
incorporating the visual modality (V) yields comparable ef-
fects, with the added benefit of enhanced regression evalu-
ation metrics. This suggests a bias-accuracy trade-off when
additional modalities, such as acoustic (A) and visual (V),
are included. However, the highest accuracy, recall, F1 score,
and RMSE were achieved by MAG-BERT-ARL when all
three modalities were integrated. This underscores the idea
that incorporating multiple modalities substantially improves
the model’s classification and regression performance on the
ETS dataset.

E. INTERPRETATION

me	at	all	times	and	didn't	give	along.	But	I	still	respected	
her	and	I	still	forward	the	wounds	at	work	and	I	was	always	
pleasant	and	respectful	towards	her.	She,	always	was	
brutally	rude	to	the	marks	to	me	and	acted	like	I	had	
listened	to	good	at	my	job.	Still	at	this	point	I	still	would	be	
a	pretty	much	respect	I	could	at	the	time	and	heard	
understand	that	we	are	only	cool	workers	and	our	friends.	
When	we	had	to	work	together	at	one	point	in	a	task,	she	
tried	to	be	rude	and	I	took	it	to	the	side	of	the	has	to	have	a	
wife.	She	said	she	always	fought	because	I	was	there	longer	
and	had	some	new	already	that	hours	would	get	special	
treatment	for	the	boss	which	was	not	true.	So	we	talked	
and	we	ended	up	getting	along	after	that	with	no	problem	
with	her.

FIGURE 5. Word importance calculated from a random instance’s
transcribed answer in the ETS dataset to the prompt: “Please tell us
about a time when you had to work with someone you did not especially
like or get along with. How did you interact?”. Words highlighted in
green positively influence the hiring recommendation score, whereas
those highlighted in red negatively affect the score.
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TABLE 10. MAG-BERT-ARL fairness, classification, and regression results on different modalities for ETS dataset. T stands for the text modality, A for
the acoustic modality, and V for the visual modality.

Method Fairness Classification Regression

DP ↓ EO ↓ EA ↓ Acc ↑ Prec ↑ Rec ↑ F1 ↑ rp ↑ RMSE ↓

ETS Dataset 0.029 0.000 0.000 1.00 1.00 1.00 1.00 1.00 0.00
T 0.046 0.076 0.018 0.50 0.77 0.50 0.60 0.63 1.64
T+A 0.084 0.109 0.129 0.62 0.63 0.62 0.63 0.41 1.71
T+V 0.080 0.181 0.105 0.60 0.62 0.60 0.61 0.38 1.40
T+A+V 0.072 0.117 0.037 0.66 0.66 0.66 0.66 0.53 0.83

FIGURE 6. Gradient SHAP attribution scores for acoustic features. The
x-axis represents the feature index for the eGeMAPS acoustic feature
set, while the y-axis indicates the token position where the scores are
calculated. Dark purple signifies a positive contribution to the hiring
recommendation score, whereas light yellow indicates a negative
contribution.

FIGURE 7. Gradient SHAP attribution scores for visual features. The
x-axis represents the feature index for the OpenFace acoustic feature
set, while the y-axis indicates the token position where the scores are
calculated. Dark purple signifies a positive contribution to the hiring
recommendation score, whereas light yellow indicates a negative
contribution.

To evaluate the impact of each token within each modality
on the overall hiring decision, Gradient SHAP was calcu-
lated. An instance was randomly selected from the ETS
dataset for this purpose. The modalities for text, acoustic,
and visual features were analyzed using Gradient SHAP to
interpret the model’s prediction for this specific instance.

Fig. 5 shows the textual interpretation, where the word
importance of the text is illustrated. For word importance,
the color green indicates that the word is likely to increase
the probability of being hired, whereas the color red suggests
the opposite effect. In this particular example, words such
as “give”, “get”, and “getting along” are associated with an
increased hiring recommendation score, as positive attributes
such as professionalism, interpersonal skills, and conflict

resolution are reflected. Conversely, words like “rude”, “bru-
tally”, “wounds”, and “fought” may carry negative connota-
tions, which adversely affect the score.

In Fig. 6 and Fig. 7, the feature importance for acoustic and
visual features extracted using eGeMAPS [32] and OpenFace
[33], respectively, is shown. For feature importance, the color
dark purple represents that a particular feature is likely to
increase the hiring probability, and light yellow signifies the
opposite. It has been revealed through analysis that the attri-
bution scores are notably higher towards the end of the video,
indicating that hiring decisions are significantly influenced
by the video’s conclusion. Moreover, specific features were
found to have a greater impact on hiring decisions. Notably,
among acoustic features, the vocal tract attributes (including
F1-3 frequency, bandwidth, and amplitude) were identified as
the most influential by the model, whereas action units within
visual features were deemed less significant. This observa-
tion may partly account for the slight increase in Equalized
Odds (EO), as variations in vocal tract characteristics across
age and gender [53] could contribute to differences in hiring
decisions.

VI. CONCLUSION
To address fairness without sensitive attributes, an automated
interview assessment system was developed, prioritizing fair-
ness by excluding sensitive attributes such as gender, race,
and age during the training and validation phases. MAG-
BERT-ARL, which combines MAG-BERT [18] with Ad-
versarially Reweighted Learning (ARL) [19], was proposed
for achieving this goal. Three variants of MAG-BERT-ARL
were developed based on their loss function to observe which
models can improve the baseline model performance in accu-
racy and fairness. Additionally, an ablation study and model
interpretations for each model modality is presented.

The findings demonstrate that integrating ARL, a tech-
nique for achieving fairness without demographics, to MAG-
BERT can enhance both the fairness and performance of a
multimodal system. The enhancements range from 0.05 to
0.17 for the Pearson correlation coefficient, 0.05 to 0.12 for
root mean squared error, 0.06 to 0.39 for accuracy, precision,
recall, and F1 score, and 0.028 to 0.112 for equal accuracy.
Despite these enhancements, it was noted that MAG-BERT-
ARL primarily addresses fairness by enhancing accuracy for
underrepresented groups, as evidenced by the enhancements
in equal accuracy.
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Several limitations may have influenced the results and
findings. First, this research focused exclusively on gen-
der as the demographics. In terms of fairness evaluations,
it was observed that while equal accuracy metrics consis-
tently improved for both the Educational Testing Service
(ETS) [17] and the First Impressions (FI) [24] datasets,
demographic parity metrics exhibited inconsistent improve-
ments, with equalized odds showing worsened performance.
Furthermore, despite the model demonstrating the ability
for fairness without demographics, as well as observability,
which aligns with regulatory compliance standards, it should
be noted that formal validation for compliance has not been
conducted.

Future research will focus on exploring alternative tech-
niques for achieving fairness without demographics to fur-
ther enhance fairness. Investigations will include integrating
methods such as exploring alternative modalities or feature
sets and employing fair representation learning to debias
modalities that may carry inherent biases. Furthermore, ef-
forts will be directed towards incorporating fairness without
demographics techniques into better-performing multimodal
foundation models to achieve prediction accuracy compara-
ble to state-of-the-art models.

.

APPENDIX A KEY TERMS

Acc Accuracy
ARL Adversarially Reweighted Learning
Avg Average
BERT Bidirectional Encoder Representations from Trans-

formers
DP Demographic Parity
EA Equal Accuracy
EO Equalized Odds
ETS Educational Testing Service
FI First Impressions
GDPR General Data Protection Regulation
MAG Multimodal Augmentation Gate
MAG-BERT Multimodal Augmentation Gate Bidirectional En-

coder Representations from Transformers
MAG-BERT-ARL Multimodal Augmentation Gate Bidirectional En-

coder Representations from Transformers Adversari-
ally Reweighted Learning

MAG-BERT-ARL B Multimodal Augmentation Gate Bidirectional En-
coder Representations from Transformers Adversari-
ally Reweighted Learning using Binary cross-entropy
loss function

MAG-BERT-ARL M Multimodal Augmentation Gate Bidirectional En-
coder Representations from Transformers Adversari-
ally Reweighted Learning using Mean squared error
loss function

MAG-BERT-ARL MB Multimodal Augmentation Gate Bidirectional En-
coder Representations from Transformers Adversari-
ally Reweighted Learning using Mean squared error
loss function and Binary cross-entropy loss function

MSE Mean Squared Error
Prec Precision
Rec Recall
RMSE Root Mean Squared Error
SHAP SHapley Additive exPlanations

FIGURE 8. Key Terms and Their Meanings
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