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Abstract—Anomalous sound detection (ASD) systems distin-
guish normal and abnormal machinery conditions on the ba-
sis of sound. While most ASD systems rely on the log Mel
spectrogram, it lacks sufficient frequency resolution and per-
forms suboptimally for rapidly changing sounds. Alternatively,
the Gammatone spectrogram, extracted using a time domain
Gammatone filterbank, offers enhanced spectrogram resolution.
This study investigates the effectiveness of the time domain
Gammatone spectrogram for ASD. To optimally learn the time
domain Gammatone spectrogram features, an Interpolation Deep
Neural Network (IDNN) model was proposed as the detection
model. This model detects nonstationary sound frames highly
reliably. An evaluation was conducted using MIMII dataset with
area under receiver operating characteristic curve (ROC AUC)
as the metric. Experimental results showed that our proposed
method achieved ROC AUC of 92.5%, outperforming the log
Mel spectrogram feature by 5.9 percentage points.

Index Terms—Anomalous sound detection, time domain Gam-
matone filterbank, IDNN, spectrogram

I. INTRODUCTION

In anomalous sound detection (ASD), unsupervised learning
methods are often used to assess machine conditions. With
this approach, a model can distinguish a machine’s typical
patterns using solely data of machine sound’s in normal
conditions for training [1]. Consequently, detecting anomalies
in machines does not necessarily require data of machine
sounds in anomalous or defective conditions, which is difficult
to obtain [2].

Most studies on ASD utilize deterministic acoustic features,
primarily spectrogram-based features [3] due to their rich
representations of time, frequency, and intensity, which make
them ideal for neural network-based models [4]. The log Mel
spectrogram, which is extracted in the frequency domain, has
been used in various studies on ASD and is mainly modeled
using various neural network-based models [5]. However, the
log Mel spectrogram has limitations in classifying machine
conditions for some machines [6]. Additionally, using short-
term Fourier transform (STFT) to extract spectrogram in the

frequency domain results in suboptimal resolution due to the
inherent weaknesses of the STFT method [7][8].

Meanwhile, the Gammatone spectrogram, another varia-
tion of the spectrogram, closely mimics the human auditory
system’s stimulus response, with its parameters also derived
from psychoacoustic experiments [9]. Therefore, the Gamma-
tone spectrogram better simulates a human experts’ ability
to distinguish machine sounds. While most spectrograms are
frequency domain-based [10], the Gammatone spectrogram
can be directly calculated from the time domain representation.
This is achieved by using a time domain Gammatone filterbank
to transform the raw waveform directly [11].

Modeling spectrograms requires a model capable of pro-
cessing 2-dimensional data. Employing a standard autoencoder
(AE) model alone often yields suboptimal results due to
challenges in accurately reconstructing nonstationary frames
[6]. This issue can be addressed by utilizing an Interpolation
Deep Neural Network (IDNN) model, which predicts only the
central frame rather than all frames. By predicting only the
central frame, IDNN has been proven to work better especially
for modelling nonstationary sound [12].

Another study reported a UNet model can outperform the
IDNN model in terms of ASD for some machines [13]. UNet
architecture has the potential to be used in IDNN since it has
some advantages over the IDNN model that can potentially
result in a complementary effect.

This paper aims to propose a novel unsupervised ASD
method employing a time domain Gammatone spectrogram.
The IDNN model, enhanced by an overlapping frame tech-
nique, is applied to enhance model performance. Additionally,
the IDNN model is also tested with both AE and UNet
architectures to determine the most optimal design. The study
findings offer insights into the effectiveness of various spectro-
grams, particularly when modeled using the IDNN approach
for ASD. This paper is part of the ASEAN IVO 2023 project,
”Spoof Detection for Automatic Speaker Verification,” which
aims to enhance the identification of irregularities in audio



Fig. 1: Proposed method using time domain Gammatone spectrogram and IDNN model for anomalous sound detection

patterns by effectively distinguishing between normal and
anomalous machine sounds.

II. ANOMALOUS SOUND DETECTION

ASD involves determining whether the sound emitted from
a machine is normal or anomalous. One challenge in this task
is the scarcity of anomalous data for training, prompting the
adoption of unsupervised learning approaches, which can be
constructed using only normal training data [14].

Deterministic acoustic features are commonly favored in
ASD systems due to their potential for better generalization,
especially when data quantity is limited [15]. Spectrograms,
which offer rich acoustic information from sound, are widely
utilized in ASD [5]. One type of spectrogram is the Gam-
matone spectrogram derived from a Gammatone filterbank.
Studies in automatic speech recognition have highlighted the
effectiveness of Gammatone filterbanks over Mel filterbanks
in terms of noise robustness [16]. Although one method [17]
employs Gammatone spectrograms extracted in the frequency
domain, the use of STFT may potentially reduce resolution.

Qi et al. reported spectrograms derived directly from the
time domain offer better representation than those derived
through intermediate processes like STFT in the frequency
domain. This is caused by frequencies being unnecessarily
approximated during STFT calculation, which may result in
the loss of some information [7]. Additionally, STFT also lacks
resolution for representing sound with fast temporal changes,
so it is not particularly suitable for nonstationary sound [8].
Therefore, with spectrograms extracted from the frequency
domain, anomalous sounds are potentially harder to detect in
valves than in other machines due to nonstationary and sparse
characteristics in the sound signal [18].

Regarding the model, unsupervised ASD typically involves
training solely on normal data and treating anomalous data as
outliers. A basic implementation is the standard AE model,
which learns to reconstruct only normal input data [19]. Con-
sequently, the reconstruction of anomalous data may not be as
accurate. Some studies have employed self-supervised learning
techniques, learning machine label IDs and flagging data as
anomalous if there is a significant deviation in predicted IDs
[20]. However, self-supervised techniques often perform less
unstable across different machines than unsupervised models
[21] and rely on data augmentation methods.

III. PROPOSED METHOD

The proposed method comprises two primary processes: ex-
tracting the time domain Gammatone spectrogram and training
the IDNN model for ASD, as illustrated in Fig. 1. During
training, the model exclusively utilizes normal data, resulting
in higher reconstruction error values for anomalous data,
effectively representing the anomaly score.

A. Time Domain Gammatone Spectrogram Feature

A time domain Gammatone spectrogram is a time-frequency
domain feature that is calculated using the time domain Gam-
matone filterbank. Time domain Gammatone filterbank is a
well-known set of filters used to simulate the response of the
basilar membrane [9]. The time domain Gammatone filterbank
uses a gamma function on multiple centers of frequency (fc)
to directly transform the raw waveform.

The impulse response of the time domain Gammatone
filterbank at a center frequency fc is defined as

g(t) = tn−1e−2πbERB(fc)tej2πfct (1)

where t ≥ 0 is the time in seconds, n is the filter order, and
b is the bandwidth coefficient. The time domain Gammatone
spectrogram uses Equal Rectangular Bandwith Scale (ERB)
to define the nonlinear spacing of the Gammatone frequency
band [22]. ERB has finer frequency resolution than mel scale at
lower frequency [23]. Therefore, the time domain Gammatone
spectrogram can prevent the loss of information at low fre-
quency which in most cases is important for machine sounds.
ERB at frequency center fc is defined as

ERB(fc) = 24.7 + 0.108fc (2)

The time domain Gammatone filterbank is implemented with
K time domain infinite impulse response (IIR) Gammatone
filters g(k)(t), each representing different center frequencies.
By focusing on a specific frequency band, each IIR filter is able
to provide accurate frequency magnitude response without the
trade-off between time and frequency resolution that comes
with windowed methods like STFT [24]. The output of the
filterbank Xk(t) from an input signal x(t) can be defined as

Xk(t) = x(t) ∗ g(k)(t) (3)
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Fig. 2: Architectures of AE-IDNN and UNet-IDNN model

The time domain Gammatone filterbank can be implemented
using a wavelet transform where the mother wavelet is
ψ(t) = g(t) [25]. Then, with α > 1, the k-th filter g(k)(t) can
be defined by scaling ψ(t) with a factor ak of t, as

g(k)(t) = ψ(αkt) (4)

αk = α
2k

K−1−1 (5)

The process of extracting and modeling the time domain
Gammatone spectrogram is shown in Fig 1.

B. Interpolation Deep Neural Network (IDNN) Model with
Autoencoder and UNet Architecture

The IDNN model is a neural network-based model that is
an improvement over the conventional approach of using a
standard AE model to reconstruct the spectrogram input. IDNN
overcomes the difficulty of detecting edge frames in standard
AE, which is especially difficult for nonstationary sounds [12].

Instead of reconstructing all input, IDNN uses the cen-
ter frame prediction method. This means that IDNN con-
structs the center frame on the basis of the input of
left and right frames. Therefore, IDNN receives inputs of
[x1, ..., xn+1

2 −1, xn+1
2 +1, ..., xn] frames and predicts the center

frame (xn+1
2

). The loss function of IDNN is defined as

L(xn+1
2
|D(E([x1, ..., xn+1

2 −1, xn+1
2 +1, ..., xn])) (6)

where L defines the algorithm of IDNN’s loss function.
IDNN performs better at predicting nonstationary frames

using the center frame prediction method [12]. Thus, to
increase the quantity of training data, instead of predict-
ing only N

K center frames with N as the total number
of frames and K as the number of frames predicted each
time, the proposed method uses N −K + 1 center frames
with some frames overlapping in the data. Therefore, the
ith processed data are [xi, xi+1, ..., xi+K−1] frames instead
of [x(i−1)K), x(i−1)K)+1, ..., xiK−1] frames. The method is
better able to handle the limited quantity of data and the rare
occurence of anomalous conditions.

IDNN is implemented with AE architecture (AE-IDNN),
which is its standard architecture [12] and UNet architecture
(UNet-IDNN), which has the potential to complement the

TABLE I: Normal and anomalous data distribution in MIMII
dataset

Machine Normal data Anomalous data

Slider

ID 00 1068 356
ID 02 1068 267
ID 04 534 178
ID 06 534 89

Fan

ID 00 1011 407
ID 02 1016 359
ID 04 1033 348
ID 06 1015 361

Valve

ID 00 991 119
ID 02 708 120
ID 04 1000 120
ID 06 992 120

Pump

ID 00 1006 143
ID 02 1005 111
ID 04 702 100
ID 06 1036 102

Total 14719 3400

use of the center frame prediction method [13]. With AE
architecture, IDNN consists of an encoder and decoder, where
the decoder aims to predict the center frame. Meanwhile, with
UNet architecture, IDNN consists of an encoder, a decoder,
and additional skip connections. With the skip connection, each
layer is connected with not only its successive layers because
the skip connection creates direct links between layers of the
encoder and corresponding layers of the decoder, thus provid-
ing more information to the model [26]. The architectures of
the AE-IDNN and UNet-IDNN model are depicted in Fig. 2

IV. EXPERIMENT

A. Datasets

We used real machinery sounds data from the malfunction-
ing industrial machine investigation and inspection (MIMII)
dataset for evaluation [18] at a 6 dB signal-to-noise ratio
(SNR) because the recorder is assumed to be located closer
to the target machine. This dataset consists of sounds from
four different actual machines including sliders, fans, valves,
and pumps augmented with real factory noise. Generally,
each machine can be divided into two main categories by
its emitted sounds’ characteristics including stationary sound
(fans and pumps) and nonstationary sound (valves and sliders)
[12][18][27]. The MIMII dataset is already used in the DCASE
challenge for ASD task [14]. It also contains actual machinery
sounds in various anomalous conditions.

Each machine type consists of four machine IDs, with
the distribution shown in Table I. For each machine ID, the
model is trained separately using the unsupervised method.
The inference process uses all anomalous data and normal data
with the same amount as anomalous data, whereas the training
process uses the remaining normal data.

B. Evaluation Metrics

The area under the receiver operating characteristic curve
(ROC AUC) is used as the evaluation metric. It is calculated
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TABLE II: Performance comparison of log Mel spectrogram and time domain Gammatone spectrogram feature across different
models

Machine
Log Mel Spectrogram Time Domain Gammatone Spectrogram

AE UNet AE-IDNN UNet-IDNN AE UNet AE-IDNN UNet-IDNN

Slider

ID 00 0.991 0.989 0.958 0.992 1.000 0.997 0.997 0.997

ID 02 0.893 0.947 0.916 0.984 0.690 0.715 0.822 0.839

ID 04 0.744 0.799 0.786 0.875 0.906 0.940 0.984 0.954

ID 06 0.656 0.653 0.668 0.739 0.976 0.997 1.000 0.999

Average 0.821 0.847 0.832 0.898 0.893 0.912 0.951 0.947

Fan

ID 00 0.763 0.809 0.716 0.765 0.803 0.844 0.855 0.884

ID 02 0.937 0.947 0.913 0.903 0.911 0.876 0.939 0.917

ID 04 0.923 0.920 0.891 0.943 0.996 0.994 0.987 0.991

ID 06 0.981 0.988 0.975 0.973 0.996 1.000 0.995 1.000

Average 0.901 0.916 0.874 0.896 0.927 0.929 0.944 0.948

Valve

ID 00 0.550 0.656 0.702 0.847 0.450 0.463 0.922 0.947

ID 02 0.622 0.682 0.704 0.887 0.929 0.957 1.000 1.000

ID 04 0.602 0.708 0.665 0.932 0.698 0.845 0.946 0.916

ID 06 0.666 0.696 0.732 0.900 0.523 0.639 0.854 0.836

Average 0.610 0.686 0.701 0.892 0.650 0.729 0.931 0.925

Pump

ID 00 0.874 0.813 0.804 0.695 0.839 0.827 0.804 0.813

ID 02 0.503 0.560 0.498 0.531 0.704 0.681 0.715 0.725

ID 04 0.997 1.000 0.999 1.000 0.960 0.997 0.997 0.998

ID 06 0.933 0.894 0.907 0.890 0.974 0.971 0.946 0.979

Average 0.827 0.817 0.802 0.779 0.869 0.869 0.866 0.879

All Average 0.790 0.816 0.802 0.866 0.835 0.859 0.923 0.925

by measuring the entire two-dimensional area underneath the
entire ROC curve. The AUC is a metric used to determine the
ability of a model to distinguish between classes [28] and is
calculated using the following formula

AUC =
1

N−N+

N−∑
i=1

N+∑
j=1

H(Aθ(x
+
j )−Aθ(x

−
i )) (7)

N− and N+ subsequently represent the number of anomalous
and normal data, xi and xj subsequently represent the current
anomalous and normal data being processed, H(x) represents
a function that return 1 if x > 0 and 0, otherwise, and Aθ(x)
represents the anomaly score of the data.

C. Experimental Configurations

The Gammatone spectrogram was extracted using the time
domain IIR Gammatone filterbank with K = 64 and α = 10.
For the mother wavelet ψ(t), we use an 4th order Gammatone
filterbank (n = 4) with b = 1.019 and fc = 600 Hz. The time
domain Gammatone spectrogram was also downsampled to
reduce the temporal dimension to 310 frames for each 10-
second sound data. Five frames were concatenated to produce a
320-dimensional input vector that was later fed into the model.

We compare the results of our system with a log Mel
spectrogram feature that was calculated using librosa library
implementation with nFFT = 1024, hop length = 512, and
mel bands = 64. The spectrogram also used the concatenation

of 5 frames to produce a 320-dimensional input vector that
was later fed into the model.

For both spectrograms, IDNN received an input of
[x1, x2, x4, x5] frames and predicted the center frame (x3)
while minimizing the loss function of the mean squared
error (MSE) loss. The hidden layers AE-IDNN consisted of
[64, 32, 16, 32, 64] neurons. Meanwhile, the hidden layers of
UNet-IDNN consisted of [64, 32, 16, 64, 128] neurons. UNet-
IDNN also employed a batch normalization layer to com-
plement the use of skip connections [29]. At the training
stage, the time domain Gammatone spectrogram and log Mel
spectrogram were trained at 200 epochs except for the log Mel
spectrogram with AE-IDNN which was trained at 400 epochs
because we observed that it could not provide an optimal
solution at 200 epochs.

For comparison, we also used the standard AE model
[18] and UNet model [13] to evaluate the generalizability
of the proposed features. Both spectrograms were trained at
200 epochs for each model, and the reconstruction error was
calculated using MSE.

V. RESULTS

The results in Table II show that time domain Gammatone
spectrogram performed better than the log Mel spectrogram
in all comparative models. Moreover, the time domain Gam-
matone spectrogram was also able to improve on the poor
performance of the log Mel spectrogram on some machines.
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Fig. 3: The t-SNE visualization of the log Mel spectrogram,
time domain Gammatone spectrogram, and bottleneck features
of both spectrograms in UNet-IDNN model for the machine
type fan. Different colors represent difference machine IDs
and conditions. The normal and anomalous clusters are high-
lighted with colored contours for some machines that show a
significant difference in the degree of separation between both
features.

Hence, the time domain Gammatone spectrogram better dis-
tinguished normal and anomalous conditions than the log Mel
spectrogram.

Even though using a conventional modeling approach with
standard AE can already produce good results for the time
domain Gammatone spectrogram, employing IDNN model
further enhanced the results, especially on sliders and valves.
The improvement of IDNN on sliders and valves was mostly
caused by the characteristics of sliders and valves, which have
more nonstationary characteristics than other machines such
as fans and pumps. The most significant improvement lies in
the valves with a more than 20-percentage point (pp) increase
in AUC score compared to baseline model AE and UNet.

Additionally, UNet-IDNN performed slightly better than
AE-IDNN with the time domain Gammatone spectrogram.
Meanwhile, in the log Mel spectrogram, UNet-IDNN sig-
nificantly improved over AE-IDNN. Thus, this shows the
effectiveness of the skip connections component on IDNN for
ASD.

Moreover, the use of the time domain Gammatone spec-
trogram yielded optimal results across both AE-IDNN and

UNet-IDNN. Meanwhile, the log Mel spectrogram exhibited
optimal result only in UNet-IDNN. This demonstrates that
the advantages of the time domain Gammatone spectrogram
complemented the use of IDNN model which also led to more
consistently optimal results across both IDNN architectures.

To further improve the performance of the UNet-IDNN
model, we also employed hyperparameter tuning with a grid
search method to find the most optimal structure and other
parameters of the model [30]. However, hyperparameter tuning
did not successfully improve the overall results.

VI. DISCUSSION

When each feature was modelled using its best model which
is UNet-IDNN, the time domain Gammatone spectrogram im-
proved over log Mel spectrogram by 5.9 pp overall. The results
also demonstrate the time domain Gammatone spectrogram’s
ability to model both stationary and nonstationary sound as
the overall performance is better than log Mel spectrogram for
every machie type in UNet-IDNN. The improvement in non-
stationary machines, particularly valves, indicates the potential
of the time domain Gammatone spectrogram for representing
sounds with rapidly changing characteristics.

In addition to non-stationary sound, the time domain Gam-
matone spectrogram functions well in stationary machines such
as fans. The effectiveness of this approach was evaluated via
t-distributed stochastic neighbor embedding (t-SNE) cluster
visualization of the latent features of the log Mel spectrogram
and time domain Gammatone spectrogram as shown in Fig.
3(a) and 3(b). T-SNE distribution is chosen because of its
ability to distinguish nonlinearly separable data which is
similar to neural network model capability [31]. The figures
show the ability of the time domain Gammatone spectrogram
to distinguish normal (red) and anomalous (blue) conditions
in fan ID 00 compared to the log Mel spectrogram.

Moreover, the time domain Gammatone spectrogram’s per-
formance is also complemented by the use of IDNN models.
Fig. 3(c) and 3(d) show the t-SNE distribution of bottleneck
features produced by the UNet-IDNN model for fans. In com-
parison to the log Mel spectrogram, bottleneck features of time
domain Gammatone spectrogram can better separate normal
and anomalous data. Hence, this indicates the compatibility
between the time domain Gammatone spectrogram and neural
network-based models.

However, the separation between normal and anomalous
data is more distinguishable in the t-SNE distribution of
the original features than that of the bottleneck features, as
shown in Fig. 3. This indicates the inability of bottleneck
features to solely represent spectrogram features, highlighting
the importance of input from skip connections in UNet-IDNN
model.

Although the time domain Gammatone spectrogram per-
forms optimally, it has limitations especially in terms of
computational complexity. Compared to STFT’s [32], extract-
ing the time domain Gammatone spectrogram requires more
computational resources due to the computation of an IIR filter
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over multiple frequency bands. Therefore, this makes the time
domain Gammatone spectrogram unsuited to real time ASD.

VII. CONCLUSION

This study proposed an unsupervised learning approach for
anomalous sound detection using the time domain Gammatone
spectrogram feature and modeled using Interpolation Deep
Neural Network (IDNN) based models. Our proposed method
demonstrated a significant improvement of 5.9 pp over the
baseline feature, the log Mel spectrogram. Moreover, the time
domain Gammatone spectrogram performed better overall than
the log Mel spectrogram in all comparative models. Utilizing
the IDNN model further enhanced the effectiveness of the time
domain Gammatone spectrogram feature, particularly IDNN
with UNet architecture. This study underscores the superiority
of the time domain Gammatone spectrogram in representing
machine sounds compared to the log Mel spectrogram fea-
ture, and highlights the effectiveness of the IDNN model for
spectrogram-based features.
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