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Abstract—Recent studies in speech processing often utilize
sophisticated methods for solving a task to obtain high-accuracy
results. Although high performance could be achieved, the meth-
ods are too complex and require high-performance computational
power that might not be available for a wide range of researchers.
In this study, we propose a method to incorporate the low
dimensional and the recent state-of-the-art acoustic features for
speech processing to predict the speech intelligibility in noise
for hearing aids. The proposed method was developed based
on the stack regressor on various traditional machine learning
regressors. Unlike other existing works, we utilized the results of
the digit triplet test, which is usually used to measure the hearing
ability in the existence of noise, to improve the prediction. The
evaluation of our proposed method was carried out by using
the first Clarity Prediction Challenge dataset. This dataset is
utilized for speech intelligibility prediction that consists of speech
signals output of hearing aids that were arranged in various
simulated scenes with interferers. Our experimental results show
that the proposed method could improve speech intelligibility
prediction. The results also show that the digit triplet test results
are beneficial for speech intelligibility prediction in noise.

I. INTRODUCTION

Hearing loss is a widespread and significant problem that
affects people’s lives. With age and other factors, an individ-
ual’s hearing function gradually deteriorates, decreasing speech
comprehension and communication skills [1], [2]. Hearing loss
directly impacts the clarity of an individual’s speech. Hearing
loss at specific frequencies makes it difficult for individuals to
discriminate certain speech sounds, reducing speech intelligi-
bility and comprehension [3]. This effect is further exacerbated
by background noise and complex listening environments [4],
[5]. As individuals’ hearing function gradually deteriorates,
they often suffer from physical burdens, further exacerbated
by emotional depression due to the inability to communicate
effectively with others.

A significant goal of hearing aids is to improve the speech
intelligibility of individuals with hearing loss to better partici-
pate in social activities, communicate with others, and receive
and understand verbal information effectively. Evaluation of
hearing abilities takes place through various methods such
as audiograms, speech tests, auditory questionnaires, auditory
neurophysiological measures, and cognitive tests [6]–[8]. Ex-
isting methods for speech intelligibility prediction in hearing
aids often rely only on audiograms to represent the status of
hearing loss, which has certain limitations.

The traditional audiogram assessments only provide infor-
mation about hearing sensitivity and frequency characteristics.

In contrast, speech comprehension involves more complex
auditory and cognitive processes, and audiograms do not fully
reflect changes in these aspects [9]. Moreover, audiograms
do not provide information about an individual’s performance
in a given speech environment, which is essential when as-
sessing the speech intelligibility of hearing aids. The effects
of environmental noise, speech intelligibility, and individual
auditory processing abilities prevent conventional audiograms
from providing detailed information on these aspects. To obtain
more comprehensive and accurate hearing assessment results
in assessing the speech intelligibility of hearing aids, we need
to combine other assessment methods, such as the digit triplet
test (DTT) as a method of assessing hearing ability in noise.

The DTT has essential applications in assessing speech
perception in complex listening environments, such as back-
ground noise or competing sounds [10], [11]. The test uses
digit triplets to measure an individual’s ability to perceive and
discriminate speech sounds in the presence of hearing loss,
especially in the high-frequency range [12]. By measuring the
speech reception threshold (SRT) obtained from the DTT, we
can reveal an individual’s ability to comprehend speech under
adverse conditions and correlate it with the overall speech
intelligibility in the real world. Lower SRT values indicate
that individuals are more capable of successfully recognizing
and discriminating speech in the DTT, which implies a higher
level of discourse intelligibility. In addition, the DTT provides
practical guidance for hearing aid assessment, selection, and
individualized rehabilitation planning by measuring an indi-
vidual’s ability to perceive and discriminate speech at lower
levels. It can also predict their overall speech intelligibility in
the real world.

The purpose of this paper is to propose a speech intelligibil-
ity prediction method that considers the results of the DTT for
hearing aids in complex listening environments. Our approach
builds on a stacked regressor that combines the functionality
of traditional machine learning regressors, including linear re-
gressor, support vector regressor, and random forest regressor.
Since the DTT can assess the hearing ability in the presence
of noise, we hypothesize that incorporating the results of the
DTT into our prediction model has the potential to improve
the prediction further.

The paper next consists of five sections. Section 2 includes
details of the related work, i.e., hearing condition assessment,
baseline of the modified Binaural Short-time Objective In-
telligibility (MBSTOI), and speech intelligibility prediction.
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TABLE I
SUMMARY OF SPEECH INTELLIGIBILITY ASSESSMENT METHODS

Assessment
Methods

Phoneme Tests Word Recognition Tests Sentence Intelligibility Tests Digit Triplet Test

Purpose Assess discrimination of
phonemes, syllables

Evaluate recognition of
individual words

Measure understanding of
sentences

Assess speech perception in
connected speech

Response Discrimination or
identification

Identification or repetition Repetition or understanding Identification or repetition

Stimuli Individual speech sounds or
minimal pairs

Isolated words Sentences Triplet of connected speech
sounds

Types of Tests Phoneme Discrimination Tests,
Phoneme Recognition Tests

Consonant-Vowel Tests Speech Intelligibility Index,
Hearing in Noise Test

Digit Triplet Test

Measurement
Outcome

Discriminative thresholds,
discrimination accuracy

Word recognition score Threshold level for speech
intelligibility

Accuracy or threshold level
for speech intelligibility

Section 3 presents the proposed method, i.e., feature extraction
and regression analysis. Section 4 describes the experiments,
such as the dataset, evaluation metrics, and results. Section 5
shows the conclusion of our study.

II. RELATED WORK

A. Hearing Condition Assessment
An audiogram measures the sensitivity of an individual’s

hearing at different frequencies. The threshold of the different
sound intensities they can hear is measured by performing a
hearing test and drawing an audiogram. The shape and results
of the audiogram can provide detailed information about an
individual’s hearing status. A physician or audiologist can use
the audiogram to help determine if there is a hearing loss
and its degree and type. Recording the hearing thresholds of
individuals at different frequencies plots the audiogram. These
hearing thresholds represent the minimum sound intensity that
an individual can hear. The pure tone average (PTA) provides
the audiogram with a measure of the degree of hearing loss. It
summarizes an individual’s hearing sensitivity over a specific
frequency range. A common way to calculate the PTA is to
select frequency points. These frequency points are the most
critical frequency ranges for speech and communication. A
higher PTA value indicates a higher hearing threshold, i.e., an
individual has a lower auditory sensitivity to sound, suggesting
the presence of hearing loss.

Existing methods for assessing speech intelligibility with
hearing aids include a series of tests to assess an individual’s
ability to perceive and understand language [11], [13]–[16].
These assessments aim to quantify the degree of speech
intelligibility and provide valuable information for diagnosing
hearing impairment, assessing treatment effectiveness, and
guiding intervention strategies. All of the methods assess an
individual’s ability to perceive and comprehend language. The
acceptable discrimination required by phoneme tests allows
for detailed speech analysis but may only partially reflect the
challenges faced in complex listening environments. The word
recognition tests provide insight into recognition at the lexical
level but may not reflect an understanding of communication
at the sentence level. The sentence intelligibility tests present
higher cognitive and linguistic demands, potentially affecting

an individual’s ability to understand and accurately respond to
the entire sentence, which places a higher cognitive burden on
individuals with hearing loss.

The DTT has demonstrated reasonable validity and reliabil-
ity in assessing speech intelligibility [11]. The DTT presents
a series of digraph triplets consisting of three speech sounds
[10]. During the test, individuals recognized different digit
triplets at different signal-to-noise ratios. By setting differ-
ent signal-to-noise ratios in the test environment, the DTT
provides insight into a person’s ability to perceive speech
in complex listening environments and helps to assess their
overall communication ability more accurately. Compared to
isolated phonemes, words, or sentences, the DTT uses a triplet
of digital speech with specific phonetic features, and the test
results more closely mimic real-life speech intelligibility.

The advantages of the DTT in complex listening environ-
ments and for individuals with hearing loss make it a promising
option for assessing speech intelligibility in challenging listen-
ing conditions. The DTT has higher sensitivity and specificity
than other testing methods, allowing for a more accurate as-
sessment of an individual’s ability to perceive and discriminate
speech sounds. Moreover, the DTT results correlate strongly
with audiogram PTA measurements, which serve as an index
to assess the degree of hearing loss and reflect an individual’s
hearing threshold at different frequencies. The correlation with
the PTA suggests that the DTT can be used as one indicator
to complement the hearing status assessment, providing more
comprehensive information for a hearing assessment. The DTT
is the ability to capture the individual’s ability to perceive the
nuances of speech features, thus providing a more comprehen-
sive assessment of the individual’s speech intelligibility.

B. Baseline Modified Binaural Short-time Objective Intelligi-
bility (MBSTOI)

The MBSTOI is an improved binaural short-time objec-
tive intelligibility index for speech intelligibility prediction in
hearing aids. The short-time objective intelligibility (STOI)
measures have successfully predicted the intelligibility of noisy
speech processed by time-frequency (TF) weighting methods
[17]. However, a limitation of STOI is its reliance on mono-
phonic speech signals, which ignores valuable dual-channel
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cues available to listeners.
The binaural short-time objective intelligibility (BSTOI) is

based on the principles of STOI but introduces some modi-
fications [18]. In BSTOI, the equalisation cancellation (EC)
model uses information from binaural cues to simulate how
the human auditory system works [19]. During the EC phase,
the linear combination of the left and right ears is described by
Eq.(1). x(l)

k,m is the signal of the TF unit corresponding to the
left ear in the m-th time period and k-th frequency bin. The
factor λ implements the equalization step in the EC stage.

x̂k,m = λ · x̂(l)
k,m − λ−1 · x̂(r)

k,m (1)

The MBSTOI performs independent EC stages at each time
range and each frequency band to estimate EC parameters.
The MBSTOI improves binaural processing and optimized
equalization stages over the BSTOI to more accurately predict
speech intelligibility. Such improvements allow MBSTOI to
better capture and utilize binaural information in the speech
signal and improve the performance of speech intelligibility
assessment.

C. Speech Intelligibility Prediction
In the field of hearing aids, predicting the speech intelligibil-

ity of listeners is an important research task. Such prediction
can be achieved by objective measurements, guiding audiol-
ogists in selecting appropriate signal processing algorithms
when fitting hearing aids, and providing valuable tools in
developing machine learning-based hearing aid algorithms and
other speech enhancement methods [20]. The objective mea-
surement of speech intelligibility refers to analyzing various
features and attributes of the speech signal. These features can
include spectral characteristics of speech, time domain charac-
teristics, and acoustic parameters. By modeling the relationship
between these characteristics and listener comprehension, it is
possible to predict the speech intelligibility of listeners with
hearing loss under listening conditions.

The widespread use of machine learning methods in speech
intelligibility prediction is due to their ability to learn patterns
and correlations from large-scale speech data and apply them
to new data samples for prediction. These methods use large
datasets and features to train models to establish associations
between features and speech intelligibility. Standard machine
learning algorithms include support vector machines, ran-
dom forests, and deep learning models. Through objective
speech intelligibility measures and machine learning methods,
audiologists and researchers can better understand listeners’
speech intelligibility and select appropriate signal processing
algorithms to improve listeners’ listening experience.

III. PROPOSED METHOD

As the proposed model, the noisy speech after hearing aid
processing is taken as input speech for feature extraction. The
result of extracted speech features also combines with the bi-
lateral audiogram and the DTT results. The aims to incorporate
both audiogram and the DTT is to account for the individual
listener’s hearing profile and tailor the prediction accordingly.
Besides, we use this holistic approach to enhance the accuracy

and relevance of speech intelligibility predictions by taking
into account the listener’s individual auditory capability. After
the feature extraction stage, the proposed model concludes with
regression analyses to predict speech intelligibility.

A. Feature Extraction

In the feature extraction, we corporate various feature ex-
traction process, including Geneva minimalistic acoustic pa-
rameter set (GeMAPS) and its extended version (eGeMAPS),
wav2vec2, hidden unit bidirectional encoder representation
from transformer (HuBERT), and waveform language model
(wavLM). The details of each feature extraction are described
in the following section.

1) GeMAPS and eGeMAPS: The open-source toolkit
openSMILE incorporates to perform extraction of the
GeMAPS and eGeMAPS parameter sets. Our proposed method
includes these sets to extract features related to signal-to-
noise ratio, spectral envelope, pitch, and temporal dynamics.
The valuable information about speech characteristics might
capture the relevant factors affecting speech intelligibility in
the context of hearing loss perception under complex listening
environments. The GeMAPS is a minimalistic parameter set
that incorporating essential prosodic, excitation, vocal tract,
and spectral features [21], [22]. Meanwhile, the eGeMAPS,
as an extended version, includes additional cepstral features to
enhance recognition accuracy beyond using only prosodic and
spectral parameters.

In detail, the set of features extracted by the GeMAPS
includes frequency-related, amplitude-related, and spectral fea-
tures. Frequency-related features include pitch (measured in
semitones), jitter (deviations in F0 period lengths), and formant
frequencies. Amplitude-related features include a shimmer
(difference in peak amplitudes), loudness (perceived intensity),
and harmonics-to-noise ratio (HNR). Finally, Spectral features
include:

• Alpha ratio: energy ratio between specific frequency
ranges

• Hammarberg Index: ratio of energy peaks
• Spectral slope: regression slopes in frequency bands
• Formant relative energy
• Harmonic difference of the first harmonic to the second

harmonic (H1-H2) and the third formant range (H1-A3)
These parameters undergo smoothing using a moving av-

erage filter and various functions to generate a set of param-
eters. These functionals include arithmetic mean, coefficient
of variation, percentiles, range, and slope-related measures.
Additionally, temporal features, such as the rate of loudness
peaks and statistics of voiced and unvoiced regions, provide a
comprehensive analysis of speech characteristics. In total, 62
parameters were extracted by GeMAPS.

As aforementioned, the extension of GeMAPS, the
eGeMAPS, includes cepstral and dynamic parameters to model
the affective states in speech analysis. The eGeMAPS intro-
duces additional parameters, including Mel-frequency cepstral
coefficients (MFCCs), spectral flux difference, and formant
bandwidth. Functionals like arithmetic mean and coefficient
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Fig. 1. Block diagram of our proposed method

of variation are applied to these parameters. The eGeMAPS
set, combined with the GeMAPS, generates 88 parameters.

2) wav2vec2: The wav2vec2 is a framework of self-
supervised learning in representing speech audio that is fine-
tuned on transcribed speech [23]. We chose self-supervised
learning because predicting speech intelligibility for hearing
loss conditions using a speech recognition model only applies
in real applications if it can deal with unlabeled data or explicit
annotation. Besides, wav2vec2 extracts high-level acoustic
features that capture important aspects of the speech signal
useful for downstream tasks of predicting speech intelligibility.

The speech features extracted by wav2vec2 include the
phonetic and linguistic properties by learning to model the
temporal relationship between different phonemes or speech
units. These representations encode information about the
distinct speech and their temporal patterns, which are crucial
for speech intelligibility. The wav2vec2 also captures the
prosodic cues such as pitch variation, rhythm, and intonation,
which play a role in conveying meaning and syntactic structure.
Lastly, wav2vec2 extracts spectral information related to the
frequency content, indicating phonetic distinctions and acous-
tic cues relevant to intelligibility.

3) HuBERT: Another self-supervised learning framework
we consider is HuBERT [24]. HuBERT consists of three
main components: the feature encoder, transformer encoder,
and classification head, which appeared as the extension of
wav2vec2. The feature encoder extracts low-level acoustic
features from the input signal and converts them into time-
frequency representation. Then, the transformer encoder cap-
tures the contextual information through unidirectional and
bidirectional transformers. Finally, the classification head maps
the acoustic features to the predicted speech intelligibility.

Although HuBERT shares the same overall architecture as
the pre-trained model, HuBERT introduces enhancements and
modifications to improve speech representation learning. It
also utilizes larger-context modeling by increasing the context
window size during pre-training to capture more long-range
dependencies and contextual information in the speech signal.
Unlike the unidirectional transformer layers used in wav2vec2,
HuBERT incorporates both unidirectional and bidirectional
transformer layers. This combination enables the model to

effectively capture the local and global context in the speech
signal, improve the ability to understand the intricacies of
speech, and extract relevant features for speech intelligibility
prediction.

4) wavLM: The last self-supervised learning model to learn
the representation for speech-related tasks that we consider
is the wavLM [25]. It is introduced as the extension of the
HuBERT framework that enables the pre-trained model to
work on speech recognition and related tasks. We include the
wavLM because of the ability to extract fine-grained details
within an audio signal. Besides, the wavLM trained using a
language modeling objective, resulting in rich representations
of speech and its linguistic properties, which can be beneficial
for tasks related to speech intelligibility.

In terms of feature extraction to predict speech intelligibility,
the wavLM model does not explicitly extract handcrafted
features. Instead, it directly operates on the raw waveform
data, allowing it to capture complex patterns and dependencies
present in the speech signal. The wavLM model learns to
encode various aspects of speech intelligibility within its
internal representations and capture acoustic features such as
pitch, spectral characteristics, phonetic content, and temporal
dynamics, among others. In addition, by training on a large
corpus of speech data, the WavLM model learns to implicitly
extract relevant features for the task at hand, making it a
powerful tool for speech intelligibility prediction.

B. Regression analysis

The extracted features were fed to the base-regressor and
the meta-regressor to obtain the final speech intelligibility
score. While speech is indeed a complex and multidimensional
signal, we use the base-regressor, which consists of linear
regressor, support vector machines, and random forest, to
make predictions. Although linear regression models have been
successfully used in various speech-related tasks, in the case
of complex listening environments and listener individuals
that affect speech intelligibility, the pattern captured by single
linear model cannot be adequate. Therefore, we utilize support
vector machines and random forests, alongside linear regressor,
to capture broader range of relationships and better handle non-
linearities in the data. Finally, each of the prediction results
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was fed to the Ridge-CV as the meta-regressor and ensemble
model to generate the final speech intelligibility score.

IV. EXPERIMENT

A. Dataset
The dataset utilized in the experiment is associated with 6

speakers, 10 hearing aid systems from the entrants of the first
Clarity Enhancement Challenge, and 27 listeners [26]. The
noisy speech in the dataset was generated from the various
living room scenarios of sound propagation through the room
and interaction to the human head. The target sentences consist
of 7-10 words in length with the subset of 1500 utterances
[27]. On the other hand, the interferer was recorded from
sounds of daily electronic appliances, such as washing ma-
chines, vacuum cleaners, and kettles, to demonstrate the non-
impulsive noise in the real world condition. Next, to create the
consistence scenarios, the position of target speaker, listeners,
and interferer is adjusted. For each scene, input signals are
convoluted with appropriate geometric room acoustic model
and head related transfer function (HTRF) database, which
include measurements for hearing aid microphones to create
suitable inputs to hearing aid system.

The information about the listeners is also given in the
dataset and characterized by the bilateral pure-tone audio-
grams. The audiogram is specified with average hearing loss
in dB in frequency between 2 to 8 kHz. Based on the measure-
ment obtained, there is 1 listener with mild hearing loss (15–35
dB), 9 listeners with moderate hearing loss (35–56 dB), and
17 listeners with severe hearing loss (>56 dB) [28]. The other
hearing ability measurement is also provided, that is, the DTT,
Glasgow hearing-aid benefit profile questionnaire (GHABP),
and Speech, Spatial, & Qualities of Hearing questionnaire
(SSQ12). In this paper, more concentration will be devoted
to the analysis of audiogram and the DTT results. Since the
results of the DTT are not available for several listeners, we
remove those data in investigating the speech intelligibility.

There are two tracks provided in the dataset. Track 1 is
a closed-set track with the known listeners and hearing aid
processors in the training set (4812 responses) and test set
(2421 responses). Track 2 is an open set track with one
hearing aid processor and five listeners unseen in the training
set. The remaining 22 listeners and 9 hearing aid processors
are available in both training and test sets, generated (3545
responses). The purpose of including track 2 is to demonstrate
how well the method generalizes the prediction to the unseen
data. Since the DTT results are unavailable for all listeners,
we remove all the data with missing values. The total number
of listeners is nineteen people with the characteristics detailed
in Table III. Note that due to this removal process, the total
number of data for this experiment is less than those in our
prior works and the existing works in the Clarity Prediction
Challenge [29].

B. Evaluation Metrics
Five universal metrics used for regression task are utilized

to assess the results, including Pearson correlation coefficient
(ρp), Spearman correlation coefficient (ρs), root mean square

Fig. 2. The audiogram of listener L239. The hearing ability is categorized
into severe hearing loss since the average hearing loss level in the audiogram
with frequency in {250, 500, 1000, 2000, 3000, 4000, 6000, 8000} Hz is
> 56 dB. Additionally, the SRT obtained from the DTT can be categorized
as high, which indicates the minimum hearing level to recognize 50% of the
digit tests.

error (RMSE), standard error (SE), and the coefficient of
determination (R2).

The ρp assesses the linear correlation between two vari-
ables. In the context of speech intelligibility prediction, ρp
is used to determine the relationship between the actual and
predicted speech intelligibility score. The ρs is also corporated
to measure the association between the actual and predicted
speech intelligibility score, even if they have a non-linear
relationship. To assess the prediction accuracy, RMSE is cor-
porate. In addition, SE helps to determine the precision of the
prediction and reliability of the experiment results. Moreover,
R2 represents the goodness of fit between the predicted and
actual intelligibility scores.

C. Results
In this section, we present the results of the experiment using

the proposed lightweight machine learning method with several
speech features for predicting speech intelligibility. Table II
shows the experiment results of the proposed method compared
to the baseline MBSTOI [29] in both Track 1 and Track 2.
The baseline MBSTOI was developed based on the MBSTOI
metric [17] with the hearing loss model developed by Nejime
et al. [30]. The speech intelligibility model was built by fitting
the output MBSTOI score of the training data with a logistic
mapping model with a sigmoid function.

Since we aim at reducing the computational complexity,
we experiment on several low dimensional acoustic features
(i.e., eGeMAPS) and the embedding features in the state-of-
the-art features for automatic speech recognition (ASR) (i.e.,
wav2vec2, HuBERT, and wavLM). The listener characteristics,
such as audiogram and the DTT, were also simplified into
categorical data. For audiograms, we use three categories:
mild, moderate, and severe. Meanwhile, based on the SRT for
the DTT results, we use two categories: low and high. These
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TABLE II
EXPERIMENT RESULTS OF THE PROPOSED METHOD WITH SEVERAL ACOUSTIC FEATURES COMPARE TO THE BASELINE MBSTOI.

Track 1 (closed-set) Track 2 (open-set)Method Feature dim.
ρp ↑ ρs ↑ RMSE ↓ SE ↓ R2 ↑ ρp ↑ ρs ↑ RMSE ↓ SE ↓ R2 ↑

Baseline MBSTOI [29] - 0.61 0.53 28.92 0.71 0.37 0.54 0.53 35.51 1.53 0.05
Proposed method (mean value)
GeMAPS 62 0.71 0.58 25.77 0.63 0.50 0.58 0.53 30.85 1.36 0.29
eGeMAPS 88 0.72 0.60 25.26 0.62 0.52 0.60 0.54 30.09 1.34 0.32
wav2vec2 1024 0.66 0.55 27.48 0.67 0.43 0.51 0.41 31.56 1.45 0.25
HuBERT 1024 0.70 0.59 26.08 0.64 0.49 0.55 0.47 30.76 1.40 0.29
wavLM 1024 0.75 0.63 24.30 0.59 0.56 0.64 0.58 28.25 1.29 0.40
Proposed method (concatenate)
GeMAPS 62 x #sec. 0.71 0.59 25.68 0.63 0.50 0.60 0.53 29.59 1.34 0.34
eGeMAPS 88 x #sec. 0.72 0.60 25.49 0.62 0.51 0.60 0.53 29.67 1.34 0.34
wav2vec2 1024 x #sec. 0.63 0.52 28.39 0.69 0.39 0.50 0.41 31.72 1.45 0.25
HuBERT 1024 x #sec. 0.68 0.57 26.85 0.66 0.46 0.50 0.39 32.20 1.46 0.22
wavLM 1024 x #sec. 0.74 0.62 24.54 0.60 0.55 0.59 0.54 29.51 1.35 0.35
Proposed method (concatenate + feature selection (512))
wav2vec2 512 0.64 0.53 28.11 0.69 0.41 0.37 0.23 34.47 1.57 0.11
HuBERT 512 0.69 0.57 26.55 0.65 0.47 0.55 0.46 30.73 1.39 0.29
wavLM 512 0.74 0.62 24.52 0.60 0.55 0.60 0.55 29.40 1.35 0.35

TABLE III
LISTENER CHARACTERISTICS FROM THE DIGIT TRIPLET TEST RESULTS AND AUDIOGRAM

Listener L200 L201 L202 L209 L215 L216 L218 L219 L220 L222
SRT −6.7 −8.8 −7.6 −6.1 −8.5 −6.3 −6.4 −6.1 −17.0 −8.2

DTT category High Low High High High High High High Low High
Hearing loss level Severe Moderate Moderate Moderate Moderate Moderate Moderate Severe Moderate Moderate

Listener L225 L227 L229 L231 L235 L239 L241 L242 L243
SRT −8.3 −6.5 −11.4 −11.0 −10.0 −6.1 −7.1 −6.9 −12.1

DTT category High High Low Low Low High High High Low
Hearing loss level Moderate Severe Moderate Moderate Mild Severe Moderate Severe Moderate

categories were based on the calculation of the average SRT of
all listeners that represents a collective level of speech intelligi-
bility. If an individual’s SRT value is significantly higher than
the mean value, the individual needs a higher signal-to-noise
ratio to discriminate speech accurately. The individual has poor
speech intelligibility under specific hearing conditions and may
have a hearing loss or hearing impairment. Conversely, an
individual with a significantly lower than average SRT value
indicates that the individual can discriminate speech accurately
at a relatively low signal-to-noise ratio, which implies that
the individual has better speech intelligibility and auditory
discrimination and may have better hearing ability. Table III
shows the categorization of the listener characteristics.

Table II indicates the results from the baseline MBSTOI and
the proposed method with three ways to reduce the dimension
of the features. For wav2vec2, HuBERT, and wavLM, we
extracted the output of the intermediate layer for each second
of the speech signal. For instance, if a signal has a 5-second
length, then we could extract 1024 × five dimensional feature.
We utilized these features in three ways by ‘mean value’,
‘concatenate’, and ‘concatenate + feature selection (512)’. The
‘mean value’ is performed by averaging the extracted feature
based on the time stamp. Hence, we only have a vector with
1024 dimensions. The ‘concatenate’ means that we use all the
extracted features, so a vector with 1024 × number of seconds

(#sec.) dimension can be obtained. Lastly, the ‘concatenate
+ feature selection (512)’ means after the concatenation, we
perform a univariate feature selection by selecting the 512
highest-scoring features based on the training data.

In most cases, the results in the table II have a higher
correlation, lower RMSE, and lower SE, which indicates that
the proposed method could achieve better results than the
baseline MBSTOI. In addition to the higher correlation and
lower RMSE, the proposed method could be regarded as a
blind or non-intrusive method because the reference speech
signal is not required for predicting speech intelligibility.
Although the GeMAPS only consists of 62 dimensions, it
could be utilized to achieve higher performance compared to
the baseline method. The additional 26 extended parameters
also positively contribute to improving the prediction accuracy.
Comparing the performance of these low dimensional features
to the recent state-of-the-art features, the wavLM could achieve
the highest performance almost in all evaluation metrics used
in the experiment. This finding aligns well with the prior
research, which also showed that the wavLM performs bet-
ter than wav2vec2 and HuBERT on all downstream speech
processing tasks [25].

Observing the experiment results we conducted to reduce
the feature dimension, we found that averaging the vectors
obtained from each speech segment could achieve a higher
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Fig. 3. Correlation analysis on the actual correctness and prediction results
based on the listener characteristics: (Left) audiogram, (Right) digit triplet test
(DTT)

prediction accuracy. For instance, by using the wavLM feature,
the ρp of the proposed method (mean value) is 5% higher than
the proposed method (concatenate). Similarly, the RMSE is
smaller, and the R2 is higher. The feature selection method in
our experiment could not improve the prediction performance.
For instance, the prediction by the feature selection using
wav2vec2 and HuBERT caused a reduction in the correlation.
At the same time, the results show no significant difference
(ρ > 0.05) compared to those without feature selection.

An in-depth understanding of the hearing status allows for
assessing the degree and type of hearing loss. An audiogram is
a standard assessment tool that provides detailed information
about hearing loss by plotting an individual’s hearing levels
at different frequencies and volume levels. Meanwhile, the
SRT obtained from the DTT provides a direct and operational
indicator of an individual’s level of speech intelligibility in
complex listening environments. Figure 3 shows the results
grouped by the audiogram and DTT results. These results
indicate that the proposed method could more accurately
predict speech intelligibility in all categories of hearing loss
conditions. Compared to the analysis of the results by audio-
gram and the DTT categories, the prediction using the DTT
category shows a more stable speech intelligibility prediction
for listeners with mild levels of hearing loss than the prediction
grouped by the hearing loss category from audiogram.

While this research provides valuable insights into speech
intelligibility prediction, we acknowledge certain limitations
inherent in the study. First, the dataset used for training and
evaluation may be limited and not fully represent the wide
range of real-world listener conditions and noisy scene scenar-
ios. To our knowledge, the CPC1 dataset is the only data that
includes the DTT results. In the future, it is important to carry
out more data collection for additional listeners on a broader
range of scenes. Second, the study primarily focuses on the
features used in common speech processing, such as in auto-
matic speech recognition or emotion recognition, overlooking
potential contributions from other important acoustic features
or cues in speech intelligibility perception. For instance, the
binaural hearing cues naturally utilized by human ears to
recognize speech have yet to be considered. Future research
should explore the incorporation of these cues to enhance
the accuracy and robustness of speech intelligibility prediction

models.

V. CONCLUSION

We proposed a method incorporating low-dimensional and
state-of-the-art acoustic features for speech processing to
predict speech intelligibility in noise for hearing aids. The
prediction method was developed based on a stack regressor
using various traditional machine learning regressors, including
linear regressor, support vector regressor, and random forest
regressor. Based on the overall results, the proposed method
outperformed the previous method, particularly when utilizing
wavLM features. The better performance is achieved with
the help of the DTT input that is categorized based on the
calculation of the average SRT of all listeners, representing
speech intelligibility level. Since the proposed method does not
require high computational power due to the low dimensional
feature and relatively simple machine learning model, it can
be considered as a baseline method before going through a
further experiment using extensive machine learning models
and sophisticated features for speech intelligibility prediction.
In future work, we plan to further analyze the phenomena
in hearing loss that both successfully and unsuccessfully
restored by hearing aids and the effect on speech intelligibility
perception.
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