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Speech intelligibility prediction methods are necessary for hearing aid development. However, many such 
prediction methods are categorized as intrusive metrics because they require reference speech as input, which 
is often unavailable in real-world situations. Additionally, the processing techniques in hearing aids may cause 
temporal or frequency shifts, which degrade the accuracy of intrusive speech intelligibility metrics. This paper 
proposes a non-intrusive auditory model for predicting speech intelligibility under hearing loss conditions. The 
proposed method requires binaural signals from hearing aids and audiograms representing the hearing conditions 
of hearing-impaired listeners. It also includes additional acoustic features to improve the method’s robustness 
in noisy and reverberant environments. A two-dimensional convolutional neural network with neural decision 
forests is used to construct a speech intelligibility prediction model. An evaluation conducted with the first 
Clarity Prediction Challenge dataset shows that the proposed method performs better than the baseline system.
1. Introduction

A hearing aid (HA) is an assistive device to help hearing-impaired 
people. Hearing aid technology has improved rapidly, providing better 
hearing and high speech intelligibility in noisy, reverberant environ-

ments. In HA development, however, there are various issues related to 
performance analysis [1,2]. The evaluation process currently uses sub-

jective testing, which is expensive and time-consuming. Moreover, the 
requirement of finding hearing-impaired listeners as test subjects may 
lead to other problems [2]. Consequently, there is no guarantee on how 
well an enhancement system will work in correcting hearing loss and 
improving speech intelligibility. In addition, the impact of technological 
sophistication on hearing aids is often underestimated. Alternatively, 
the development of objective tests to predict speech intelligibility has 
been proposed as a better way to evaluate the system performance. As 
the target users of hearing aids are hearing-impaired listeners, a predic-

tion method should also facilitate signal processing based on auditory 
perception with hearing loss.

A well-known method to measure speech intelligibility is the 
hearing-aid speech perception index (HASPI) [3]. The HASPI was built 
with the aim of assessing the speech intelligibility perceived by both 
normal listeners and hearing-impaired listeners after hearing aid pro-

cessing. This method mainly comprises an auditory model to extract 

* Corresponding author.

speech features and a machine learning model to predict speech intel-

ligibility. The auditory model, which was designed to simulate both 
normal and impaired hearing, provides benefits in terms of better un-

derstanding both kinds of perception in the human ear. Additionally, 
temporal alignment and a delay compensator are used to synchronize 
input signals and correct the delay introduced after hearing aid process-

ing.

Although this auditory model design provides many benefits for 
speech intelligibility prediction with the HASPI, it cannot address bin-

aural hearing, thereby limiting this method’s effectiveness in noisy en-

vironments. Moreover, auditory models cannot simulate hearing loss 
severity outside the conditions represented by audiograms captured 
from individuals. HASPI evaluation has also been reported to strongly 
depend on the human subject data used in the training process.

Another method to measure speech intelligibility is the modified 
binaural short-time objective intelligibility (MBSTOI) method, which is 
the latest STOI method specializing in binaural processes [4]. Predicting 
speech intelligibility under hearing loss conditions requires performing 
preprocessing to generate time-domain signals after auditory process-

ing. To predict speech intelligibility under hearing loss conditions in 
the first Clarity Prediction Challenge (CPC1) [5,6], the Cambridge hear-

ing loss model was utilized as the initial stage to preprocess the input 
binaural signal. Then, after generating the speech signals affected by 
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hearing loss, speech intelligibility prediction based on a mathematical 
approach was performed.

Unfortunately, the baseline model in the CPC1 cannot compete well 
with the HASPI method in terms of speech intelligibility prediction [6]. 
Despite the model’s capability to accept binaural input, there is no pro-

cess to eliminate the delay introduced after hearing aid and hearing 
loss processing (a common problem with intrusive metrics). In addition, 
the MBSTOI’s insensitivity to level changes limits its usefulness because 
such level changes are a critical factor in assessing speech intelligibil-

ity under various hearing loss conditions. Therefore, other measures or 
subjective ratings are needed to provide a more comprehensive speech 
intelligibility assessment in conjunction with the MBSTOI. Finally, both 
the HASPI and the baseline in the CPC1 are intrusive methods that re-

quire clean speech as a reference signal. However, clean speech is often 
unavailable in real-world applications.

Hence, this paper proposes a non-intrusive method that incorporates 
a hearing loss model to predict speech intelligibility. Specifically, we 
modified the HASPI auditory periphery model, allowing its use with-

out reference speech. We also incorporated acoustic features that are 
beneficial for speech intelligibility prediction. We then built a speech 
intelligibility prediction model by using a parallel deep learning model 
to process binaural signals. We hypothesize that the proposed method 
can provide accurate speech intelligibility prediction by incorporating 
information from the hearing loss model, acoustic parameters, and bin-

aural signals without the problem of processing the delay due to hearing 
aids.

The rest of this paper comprises several sections. We describe related 
work on speech intelligibility prediction in Section 2. Next, Section 3

covers the details of the proposed method. Then, Section 4 explains 
our experimental data, evaluation method, and the results of the ex-

periments. Section 5 discusses our results, some key findings, and the 
limitations of the work. Finally, Section 6 summarizes our findings and 
concludes the paper.

2. Related work

Speech intelligibility can be described as the ability to understand 
target speech [7]. Because speech intelligibility measures how well an 
individual perceives and interprets speech, speech intelligibility assess-

ment has become fundamental in communication systems. By measur-

ing speech intelligibility, accurate and efficient communication can be 
established. An even larger impact is the improvement in individuals’ 
quality of life.

The methods used to measure speech intelligibility in communi-

cation systems are divided into intrusive and non-intrusive methods, 
where the former require a clean speech signal and the latter do not. 
The choice between intrusive and non-intrusive methods depends on 
the specific goals and evaluation requirements [8].

2.1. Intrusive methods for speech intelligibility prediction

Intrusive methods are often used to evaluate human speech percep-

tion performance under controlled, ideal listening conditions, such as 
those in clinical settings [9]. Under ideal conditions, intrusive meth-

ods provide results that are directly related to an individual listener’s 
subjective experience. Some intrusive metrics can also be used to deter-

mine the specific types of distortion that affect speech perception and 
evaluate the effectiveness of signal processing in reducing distortion.

We begin with the speech intelligibility index (SII) [10], an intru-

sive method for measuring speech intelligibility. The SII measures the 
proportion of speech information available in a given speech signal. It 
is based on the idea that certain frequency bands of a speech signal 
are more important for speech perception than others. To calculate the 
SII, the spectrum data of both the background noise and the speech sig-

nal are needed to calculate the signal-to-noise ratios (SNRs) in different 
2

frequency bands. These SNRs are multiplied with frequency-dependent 
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weights based on the importance of each frequency band for speech in-

telligibility. The SII is the sum of the weighted SNRs across all frequency 
bands.

Similar to the SII, the speech transmission index (STI) [11] is used 
to evaluate the intelligibility of speech signals under noisy, reverberant 
environments. One advantage of the STI is that it provides more robust, 
accurate speech intelligibility prediction. The STI method is based on 
a standardized method for measuring the transmission of speech in a 
given environment. Specifically, a modulation transfer function (MTF) 
is used to evaluate the transmission quality of a speech signal through 
a communication system by incorporating the effects of background 
noise, reverberation, and other factors that can degrade speech intelli-

gibility. The STI captures the modulation depth, spectral content, and 
temporal fluctuations of the input degraded signal in each frequency 
band. The standard IEC 60268-16:2020 [12] describes the setup for 
calculating the STI. The modulation transmission indices (MTIs) are cal-

culated as the ratio of output modulation to input modulation for each 
frequency band. Then, it is reduced to a single-number STI by convert-

ing the MTIs into signal-to-noise ratios, summing them by the octave 
band, and applying weighting factors.

Another intrusive method is the normalized covariance metric 
(NCM) [13], which leverages the idea that a spectral structure contains 
much information on distortion and how similar a degraded signal is 
to the reference signal. The NCM intelligibility calculation starts with 
signal decomposition using a gammatone filterbank, which is followed 
by temporal amplitude envelope extraction via a Hilbert transform. 
Next, the power spectral density of the signal over different frequency 
bands and the cross-spectral density between the degraded and refer-

ence signals are calculated. As a result, the NCM evaluates the degree 
of correlation between degraded and reference speech signals that are 
normalized by their overall power levels.

While the NCM discards the temporal fine structure (TFS), the TFS 
spectrum (TFSS) index [14] is a speech intelligibility prediction method 
that incorporates the TFS, which has been found to be important for 
speech perception and intelligibility. In the TFSS measurement, the TFSs 
of both clean and degraded signals are derived from bandpassed sig-

nals through a decomposition process involving the Hilbert transform 
and fine structure analysis. The Hilbert transform generates an analytic 
signal with an envelope and a phase component, effectively encod-

ing frequency information. Extracting the phase component yields the 
TFS, which represents fine-grained temporal variations in the signal. 
This TFS is used to calculate coherence indices for each band, along 
with articulation index weighting functions. The accumulated coher-

ence indices produce the TFSS index, which performs effectively under 
nonstationary noise and reverberation conditions.

The STOI [15,16] is sometimes preferred in an evaluation over some 
other metrics for several reasons. One reason is that short-term pro-

cessing allows frame-by-frame temporal and spectral characterization, 
which can be useful for analyzing distorted speech signals. Another rea-

son is that STOI predictions have been shown to be highly correlated 
with speech intelligibility measured by subjective tests. There are many 
STOI extensions to facilitate a wider range of applications. For example, 
the discrete binaural STOI (DBSTOI) [17] and MBSTOI [4] enhance the 
initial STOI performance and accuracy and extend the model, enabling 
the binaural processing of stereo input signals.

Finally, to evaluate the speech perception performance of hearing 
aids, Kates et al. proposed the HASPI method [3]. The HASPI is a vari-

ant of the SII that incorporates the effects of hearing aid processing on 
speech perception. Specifically, the HASPI incorporates models for nor-

mal and impaired hearing, such as frequency shaping and compression 
models, to estimate the effects of auditory perception on a speech sig-

nal. The resulting estimate of a processed speech signal is then used 
to calculate a speech intelligibility score. This method has been widely 
used in hearing aid research and development because of its promis-
ing prediction accuracy. In particular, the incorporation of hearing loss 
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models enables the HASPI to more accurately reflect real-world hearing 
aid performance than some other metrics.

2.2. Non-intrusive methods for speech intelligibility prediction

In contrast, non-intrusive methods aim to estimate speech intelligi-

bility without the involvement of reference signals in the prediction. 
Non-intrusive methods are often preferred in real-life situations and re-

search settings due to their advantages over intrusive methods. While 
these methods may not always perfectly align with subjective expe-

riences, they offer certain benefits, such as reduced disruption and 
increased feasibility. For instance, non-intrusive methods do not nec-

essarily require the participation to utilize sensors or equipment in the 
communication process (for obtaining the reference signals). Thus, par-

ticipants can have conversations without additional interruptions or dis-

tractions. Additionally, the environment settings for intrusive methods 
to get pairs of reference and noisy signals are often more complicated 
than the non-intrusive ones. The noisy signals for non-intrusive meth-

ods can be recorded without requiring specialized equipment, such as 
in everyday situations. However, according to [1], there have yet to 
be any non-intrusive methods that are sufficiently well established for 
measuring speech intelligibility.

The most well-known non-intrusive method for speech intelligibil-

ity prediction is the speech-to-reverberation modulation energy ratio 
(SRMR) [1]. The SRMR is calculated by dividing the energy of the mod-

ulation spectrum in the speech region by the energy of the modulation 
spectrum in the reverberation region. The SRMR quantifies the relation-

ship between the modulation energy found in low-frequency channels 
centered between 4 and 18 Hz and the modulation energy detected in 
higher-frequency channels ranging from 29 to 128 Hz. The SRMR for 
cochlear implants (SRMR-CI) [18] and SRMR for hearing aids (SRMR-

HA) [19] are variations that were specifically modified to assess the 
performance of cochlear implants and hearing aids, respectively.

While the SRMR focuses on measuring intelligibility by leverag-

ing the modulation spectrum, the modulation spectrum area (ModA) 
[20] measures the impact of noise, particularly nonstationary noise, on 
speech intelligibility. The development of the ModA was based on the 
hypothesis that the auditory system analyzes speech signals in terms of 
amplitude modulation (AM) and frequency modulation (FM) patterns. 
Thus, the ModA calculates the modulation power spectrum of a de-

graded signal in each frequency band. The speech intelligibility index 
is then determined as the average area under the modulation spectrum 
curve value across all frequency bands.

In recent years, deep learning-based approaches for speech intel-

ligibility prediction were also proposed to compensate for the limi-

tations of signal processing approaches [21,22]. For instance, Zezario 
et al. [22] proposed the multiobjective speech assessment (MOSA-Net) 
model, which exploits acoustic information from multiple domains in 
model training. It was originally trained to predict speech assessment 
metrics, such as the STOI and perceptual evaluation of speech qual-

ity. The model was extended by integrating the Cambridge hearing loss 
model [23] to predict speech intelligibility for hearing aids [24].

3. Proposed method

Fig. 1 shows a block diagram of our proposed method. Because this 
method is a non-intrusive method, the inputs are improved speech-in-

noise (SPIN) signals from an HA output and the listener’s audiogram. 
We extract three groups of features. First, we extract the spectral enve-

lope from an auditory model. Second, we extract the general acoustic 
parameters that are used as a baseline representation in many speech 
processing tasks, namely, the extended Geneva minimalistic acoustic 
parameter set (eGeMAPS) [25]. The eGeMAPS feature set is obtained 
by utilizing the openSMILE toolkit [26]. Finally, we also incorporate 
a pre-trained large-scale self-supervised learning model for speech pro-
3

cessing, namely the wavLM model [27] that was reported to be able to 
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learn universal representations for speech processing tasks. These three 
groups of features were also used in our prior work [28], and their use 
significantly improved speech intelligibility prediction for hearing aids. 
However, the auditory model proposed for intelligibility and quality 
predictions in [29] (further we called the EarModel) required reference 
signals and thus could not be considered a non-intrusive method. More-

over, each feature group was processed separately with a regression 
model to predict speech intelligibility scores, which were then used to 
predict a final speech intelligibility score with a stack regressor. In con-

trast, this study aims to simplify the speech intelligibility prediction 
model by concatenating the feature groups as inputs to a neural net-

work model, as shown in Fig. 2.

3.1. Auditory model

The auditory model in the proposed method is a modified version of 
the HASPI model [29]. In the resampling process, the input degraded 
signal (improved SPIN signal) is adjusted to 24 kHz and passed through 
the middle ear. The middle ear is modeled by cascading a 2nd-order 
low-pass filter with a cutoff frequency of 350 Hz and a 1st-order high-

pass filter with a cutoff frequency of 5000 Hz, as shown in Fig. 3.

The filtered signal is processed in two filterbanks for control and 
analysis. Both filterbanks decompose the input into 32-channel signals 
by using a gammatone filterbank. The details of the gammatone filter 
design will be explained later, along with the analysis filterbank. The 
center frequency is converted to an equivalent rectangular bandwidth 
(ERB) frequency, and for the control filterbank, a basal shift by 0.02 
of the basilar membrane length is applied. The maximum hearing level 
at frequencies of 250, 500, 1000, 2000, 4000, and 6000 Hz is set to 
100 dB and a maximum hearing loss reference is used for the control 
filterbank [29]. The input listener’s audiogram is used to determine the 
estimated loss parameters. The output of the control filterbank is the 
signal envelope extracted at the maximum hearing level.

Under normal hearing conditions, an input signal with a sound pres-

sure level (SPL) below 30 or above 100 dB undergoes linear amplifica-

tion, while a signal with an SPL between 30 and 100 dB is subject to 
compression. The compression ratio (CR) initially varies with the fre-

quency and increases from 1.25:1 at the lowest center frequencies to 
3.5:1 at the highest, as follows:

CR = 1.25 + 2.25 × 𝑛− 1
𝑁ch − 1

, (1)

where 𝑛 is the channel number and 𝑁ch is the total number of channels. 
The CR is adjusted to become closer to 1:1 as the outer hair cell (OHC) 
loss increases.

We also approximate the proportion of attenuation due to OHC 
and inner hair cell (IHC) damage. As suggested in [30], OHC dam-

age causes a more significant loss of sensitivity at high frequencies, 
whereas IHC damage may be more important for loss of sensitivity at 
low frequencies. Although the percentages cannot be precisely defined, 
the proportion of OHC loss is higher than that of IHC loss, depending 
on the severity of an individual’s hearing loss. This is because the OHCs 
are more responsible for amplifying sounds by changing shape in re-

sponse to sound vibrations, causing the tectorial membrane to move 
and thereby stimulating the IHCs. Hence, we use the OHC attenuation 
attnOHC to calculate the filterbank bandwidth BW relative to normal 
hearing by the following equation:

BW = BW+ 2 × attnOHC+
(

attnOHC

50

)6
, (2)

In addition, the signal envelopes generated by the control filterbank 
are converted to a sound pressure level in decibels and used to compute 
the bandwidth increment in response to a high-level signal. If the sig-

nal is below 50 dB, there is no bandwidth adjustment (i.e., below the 
minimum bandwidth or the bandwidth calculated for the input audio-

gram). If the signal is above 100 dB, the bandwidth at the maximum 

OHC loss is used. For signals between 50 and 100 dB, the bandwidth is 
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Fig. 1. Block diagram of the proposed method. Here, L and R denote the left and right ears, respectively, and NDF is a neural decision forest layer for predicting the 
speech intelligibility score.

Fig. 2. Speech intelligibility prediction model for a one-channel input, specifically, the left ear. This figure is a more detailed version of the parts in Fig. 1. “Env. 
Ch-x” denotes the spectral envelope of channel 𝑥. The Conv2D block is a two-dimensional convolutional neural network (CNN) block, and the FC layer is a final, 
fully connected neural network layer.
Fig. 3. Middle ear filter. LPF stands for low-pass filter, and HPF stands for high-

pass filter.

linearly interpolated between the minimum and maximum bandwidths 
according to the controlled signal level.

The analysis filterbank implements the calculated bandwidth to sim-

ulate hearing loss due to OHC damage. This filterbank comprises a 
4th-order gammatone filter (𝑁 = 4) based on the implementation in 
[31]. The impulse response of the gammatone filter is given by

ℎ(𝑡) =𝐴𝑡𝑁−1𝑒−2𝜋𝑏𝑡 cos (2𝜋𝑓𝑡) , (3)

where 𝐴 is the amplitude, 𝑏 is the bandwidth of the filter, and 𝑓 is the 
filter’s center frequency. In this implementation, an impulse-invariant 
transformation of the gammatone filter is applied. The input signal is 
first demodulated down to the baseband by using a complex exponen-
4

tial and then passed through a series of four one-pole low-pass filters. 
The output of the analysis filterbank is the signal’s temporal amplitude 
envelope (TAE) and temporal fine structure (TFS), which will be subject 
to compression. The TAE represents the magnitude of the signal and is 
calculated by taking the square root of the sum of the squares of the 
real and imaginary parts of the signal, with scaling by a gain factor.

Next, we explain the cochlear compression that is implemented in 
each auditory filter band. The auditory compressor works as a nonlin-

ear system that applies a gain to the signal envelope generated by the 
control filterbank to compress the dynamic range of the signal. Cochlear 
compression includes the conversion of a control envelope to a dB sound 
pressure level and the computation of compression gain in dB. A control 
envelope is converted into a dB sound pressure level, the signal levels 
above the upper threshold and at the lower threshold are clipped, and 
then the compression gain in dB is computed. The upper threshold for 
clipping is set at 100 dB, and the lower threshold is determined by the 
low knee value, which represents the adjustment due to OHC atten-

uation. The gain is then converted to a linear form and filtered by a 
low-pass filter. Finally, it is applied to the input signals to obtain the 
compressed TAE and TFS.

To incorporate the effect of IHC damage, the compressed TAE is 
converted back to decibels, and the previously obtained IHC attenua-

tion is subtracted from the results. The resulting gain is also applied to 
the compressed TFS. In addition, rapid and short-term IHC adaptation 
is provided because the sensitivity of IHCs to sound input changes over 
time in response to stimuli. These adaptations are based on an equiva-

lent resistor–capacitor (RC) circuit model with two time constants that 
represent rapid (2 ms) and short-term (60 ms) adaptations and are 
mapped to 1st-order backward differences. This process uses the TAE 
in decibels and generates an adapted envelope and a function for gain 
versus time that mimics the adaptation of basilar membrane motion. 
Additional Gaussian noise is also preserved in the TFS to ensure the 
correct application of IHC adaptation and simulate the auditory thresh-

old.

Finally, delay compensation is implemented in the gammatone fil-
terbank for each filter at its center frequency. The group delay com-
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pensation first computes the group delay of each gammatone filter with 
the ERB equation in [32]. Then, the firing rate output of the IHC model 
is adjusted so that all outputs have the same group delay. The result-

ing TAE in each frequency band is attenuated with linear gain below the 
lower threshold and above the upper threshold; between the thresholds, 
it is compressive, with a compression ratio of CR:1.

3.2. Speech intelligibility prediction model

The proposed speech intelligibility prediction model comprises two 
main parts. The first part contains a two-dimensional CNN (Conv2D) 
block and a fully connected layer. The second part contains a neural 
decision forest (NDF) layer.

The Conv2D block receives inputs comprising 2D spectral envelopes 
with time on one axis and the channel on the other, as extracted from 
the EarModel. The Conv2D block can be used to compress higher-

dimensional features and automatically learn and extract discriminative 
features for speech intelligibility prediction. After passing through the 
Conv2D block, the discriminative features are concatenated to form 
eGeMAPS and wavLM features. eGeMAPS [25] includes 88 distinct low-

level descriptors that are related to spectral, prosodic, voice quality, and 
temporal features. The eGeMAPS feature set has been shown to be ef-

fective in capturing emotions and affective states. Thus, it is commonly 
used as a baseline acoustic feature set in many speech processing stud-

ies.

Recent technology in automatic speech recognition (ASR) has shown 
remarkable improvements through self-supervised learning. WavLM is 
a technology that was reported to be effective in solving downstream 
speech tasks [27]. Because it combines a speech prediction learning pro-

cess and denoising, wavLM is not only effective for ASR tasks but can 
also potentially improve the performance of non-ASR tasks. We incor-

porate the wavLM feature as a representation of speech content because 
the difficulty of speech content affects speech intelligibility prediction. 
Finally, all the features are concatenated and passed to the fully con-

nected layer.

As mentioned above, our speech intelligibility prediction model uses 
an NDF layer as the last layer. The NDF [33] was chosen because it can 
provide a better interpretable model than traditional neural networks. It 
can also capture both linear and nonlinear dependencies in data. Thus, 
it has been reported to improve the prediction accuracy with a shorter 
training time.

4. Experiment

This section describes our experiment, including the dataset, the ex-

perimental and evaluation settings, and the results.

4.1. Dataset

We used the first Clarity Prediction Challenge (CPC1) dataset,1

which was recorded under the following scenario. Each scene was sim-

ulated as a small, box-shaped room with moderate reverberation. A 
hearing-impaired person listened to a unique sentence with 7-10 words 
spoken by the target speaker. Interference noise was present in the form 
of another speaker or a continuous noise source. The positions of each 
sound source and the listener, the room dimensions, and the wall mate-

rials were generated by a scene generator, as described in the challenge.

The CPC1 dataset contains two subsets for training and evaluation. 
The recording process incorporated six British English speakers, 10 
hearing aid processors, and 27 hearing-impaired listeners. Each scene 
comprises a distinct speech sample from the target speaker and interfer-

ence noise. Additionally, the listener characteristics are also available, 
e.g., pure-tone air conduction audiograms. The challenge included two 
5

1 https://claritychallenge .org /clarity _CPC1 _doc /docs /cpc1 _data.
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tracks: (1) a closed-set track (all listeners and HA processors were seen, 
but the recording scenes were unseen) and (2) an open-set track (all 
scenes, listeners, and HA processors were unseen).

4.2. Experimental setting

Since our proposed method is a non-intrusive method, the inputs 
are only the improved SPIN signals without the reference signals and 
the listener’s audiogram. The input signals are stereo signals. We pro-

cessed the input signals with dual-stream neural networks and finally 
combined them with a fully connected layer with a rectified linear unit 
(ReLU) activation function to predict the speech intelligibility score 
with a range from 0 to 100 (as shown in Fig. 1).

As mentioned in Section 3, we extracted three feature groups: (1) the 
spectral envelope, (2) eGeMAPS, and (3) wavLM. To extract the spec-

tral envelope, we used the EarModel described in Section 3.1. In this 
experiment, we set the number of channels (𝑁ch) to 32. Subsequently, 
the frame length was set to 20 ms with a 50% overlap between consecu-

tive frames. The output spectral envelope extracted from each improved 
SPIN signal was an 𝑀 ×(𝑁ch +1) matrix, with 𝑀 as the number of over-

lapping frames. For training, we unified the rows of the input matrices 
for the extracted spectral envelopes, with 𝑀 ′ set to 2400.

Next, to extract the eGeMAPS and wavLM features, we downsam-

pled the input signals to 16 kHz. This was because the pretrained model 
was trained with 16-kHz sampled speech audio. The eGeMAPS was ex-

tracted with the openSMILE toolkit in Python.2 Specifically, we used the 
eGeMAPSv02 functionals extractor, which outputs an 88-dimensional 
feature vector for each input signal. Finally, we extracted the wavLM 
features by using a pretrained wavLM large model from Microsoft3 [27]. 
Specifically, we used the output of the model’s temporally averaged em-

bedding, which resulted in a 1024-dimensional feature vector for each 
input signal.

The training process was conducted in a supervised manner with 
the correctness of the subjective listening test as the target label. First, 
we conducted a 5-fold cross-validation with the training dataset to de-

termine the details of the neural network architecture for the speech 
intelligibility prediction model. We set the number of epochs and batch 
size to 100 and 16, respectively. Additionally, we used the adaptive 
moment estimation (Adam) optimizer with its default parameters and 
the mean squared error as the loss function in the Keras framework. 
Early stopping regularization was applied to avoid overfitting. Second, 
we evaluated the best model in the training phase by using the CPC1 
evaluation data as test data. As mentioned above, the dataset includes 
two tracks. The closed-set track was used when we assumed that the lis-
tener and HA system were known. This track contains 4,863 scenes of 
training data and 2,421 scenes of test data. When both the listener and 
HA system were unknown, we used the open-set track, which contains 
3,580 scenes of training data and 632 scenes of test data.

4.3. Evaluation

We compared our proposed method with the existing speech intelli-

gibility prediction methods introduced in CPC1, including the baseline 
MBSTOI with a hearing loss model, the HASPI, and the first winner 
of CPC1, namely, the multi-branched speech intelligibility prediction 
model (MBI-Net) [24]. Recall that the HASPI is a well-known metric 
that is used for hearing aid development and is trained with the IEEE 
sentence dataset. To map the HASPI output to the listening test results 
in the CPC1 dataset, we used a logistic mapping model with a sigmoid 
function. Mathematically, the mapping function 𝑓 (𝑥) can be expressed 
as follows:

2 https://audeering .github .io /opensmile -python/.

3 https://huggingface .co /microsoft /wavlm -large.

https://claritychallenge.org/clarity_CPC1_doc/docs/cpc1_data
https://audeering.github.io/opensmile-python/
https://huggingface.co/microsoft/wavlm-large
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Table 1

Overall results from the speech intelligibility prediction models: the baseline model in CPC1 [6], the HASPI [3], MBI-Net [24], and 
our proposed method. We also showed the results of the ablation test by excluding (excl.) each feature used in the proposed method. 
‘n/a’ indicates that the score is not available.

Method Binaural Non-intrusive Track 1 (closed-set) Track 2 (open-set)

𝜌 ↑ RMSE (%) ↓ 𝑅2 ↑ 𝜌 ↑ RMSE (%) ↓ 𝑅2 ↑

Baseline Yes No 0.62 28.52 ± 0.58 0.39 0.53 36.52 ± 1.35 -0.02

HASPI (left) No No 0.62 28.67 ± 0.58 0.38 0.54 30.72 ± 1.22 0.28

HASPI (right) No No 0.62 28.68 ± 0.58 0.39 0.51 31.48 ± 1.25 0.24

MBI-Net [24] Yes Yes 0.74 24.70 ± 0.50 n/a 0.59 30.72 ± 1.22 n/a

Proposed method Yes Yes 0.75 24.34 ± 0.49 0.55 0.60 28.89 ± 1.15 0.36

Proposed method (excl. eGeMAPS) Yes Yes 0.72 25.68 ± 0.53 0.51 0.41 32.32 ± 1.28 0.26

Proposed method (excl. wavLM) Yes Yes 0.74 24.60 ± 0.50 0.54 0.55 30.29 ± 1.25 0.28

Proposed method (excl. EarModel) Yes Yes 0.71 26.11 ± 0.56 0.45 0.40 33.64 ± 1.29 0.21
Fig. 4. Loss function during the training phase of the proposed method for the 
closed-set track. The blue and orange lines indicate the losses for the training 
and validation sets, respectively.

𝑓 (𝑥) = 1
(1 + 𝑒−𝑘(𝑥−𝑥0))

, (4)

where 𝑘 is the growth rate of the curve, 𝑥 is the HASPI output value, 
and 𝑥0 is the 𝑥 value at the logistic function’s midpoint.

To compare the methods, we used three common evaluation met-

rics for regression tasks: (1) the Pearson correlation coefficient (𝜌), (2) 
the root-mean-square error (RMSE), and (3) the coefficient of determi-

nation (𝑅2). First, 𝜌 measures the linear correlation between the actual 
listening test results and the predicted speech intelligibility. Second, the 
RMSE measures the difference or error between the predicted and actual 
speech intelligibility. The standard deviation error is also calculated to 
estimate the variability across multiple samples of the prediction. Third, 
𝑅2 measures how much of the data’s variation can be explained by the 
model. We also conducted an ablation study to analyze the performance 
of each part of our proposed method.

4.4. Results

In this section, we describe the experimental results to evaluate the 
overall performance of our proposed method and the performance of 
every component included in its architecture.

4.4.1. Overall performance

Fig. 4 shows the loss function plotted against the number of epochs 
during the training phase of the proposed method. It is observed that 
the loss function values for both the training and validation sets de-

creased sharply during the first few epochs, indicating that the model 
quickly learned to fit the training data. The loss function continued to 
decrease for the training set, whereas after approximately 10 epochs, 
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the loss function for the validation set began to plateau, indicating that 
Table 2

Ablation test results for evaluating the auditory model.

Method Track 1

𝜌 ↑ RMSE (%) ↓ 𝑅2 ↑

Proposed Method 0.75 24.34 ± 0.49 0.55

NH model (a) 0.71 26.18 ± 0.53 0.48

EarModel only (b) 0.68 28.77 ± 0.56 0.37

Better ear (c) 0.74 24.69 ± 0.50 0.54

the model was no longer improving with the validation data. Hence, we 
set the number of epochs to 20 for building our final speech intelligibil-

ity prediction model.

Next, Table 1 shows a summary of the comparative evaluation re-

sults from our proposed method, the baseline method in CPC1 (Cam-

bridge hearing loss model + MBSTOI), HASPI, and MBI-Net. Because 
the HASPI algorithm receives a monaural signal input, we separately an-

alyzed the results obtained from each ear, denoted as “HASPI (left)” and 
“HASPI (right).” Both the baseline method and the HASPI are consid-

ered intrusive metrics because they require clean speech for alignment 
in the speech intelligibility prediction model. MBI-Net [24] is also a bin-

aural and non-intrusive method because it utilizes the output signals of 
the hearing loss model for both the left and right channels. In contrast 
to our prior works [28,34], here, we developed a non-intrusive metric 
that does not require clean speech to predict speech intelligibility. In 
most cases, intrusive metrics provide more precise speech intelligibility 
prediction. Nevertheless, processing in HA systems may cause tempo-

ral or frequency shifts, making it difficult for existing intrusive speech 
intelligibility metrics to obtain accurate results.

Overall, the experimental results showed that the proposed method 
performed better than the other compared methods in terms of the 𝜌, 
RMSE, and 𝑅2 metrics. For instance, our method obtained an 𝑅2 value 
that was approximately 0.16 higher than the 𝑅2 values of the baseline 
and HASPI, which means that 16% more of the variation in the depen-

dent variable was explained by the independent variables. In summary, 
this result indicates that the proposed method yielded a better fit than 
that of the comparison methods. The bottom part of Table 1 shows the 
performance of the proposed method when one set of features was ex-

cluded. In all scenarios, excluding one set of features causes a reduction 
in 𝜌 and 𝑅2. Moreover, it increases the RMSE, which indicates that each 
feature contributed positively to the proposed method. Hence, to further 
support our conclusions, we performed an ablation study to analyze the 
performance of each component in our proposed method.

4.4.2. Auditory model performance

As shown in Fig. 1, our proposed method is constructed using an 
auditory model that incorporates hearing loss phenomena. To evaluate 
the significance of the proposed EarModel, we performed an ablation 
study with the three variations shown in Figs. 5(a–c).

First, we investigated the hearing loss model in the auditory periph-
ery model by inputting a normal hearing audiogram into the EarModel 
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Fig. 5. Ablation test for evaluating the auditory model performance.
(referred to later as the “NH model”). The resulting model is illustrated 
in Fig. 5a. We defined the characteristic of normal hearing by specifying 
0 dB as the hearing loss level at all frequencies. The results are listed 
in Table 2, and they indicate that by ignoring the hearing loss level, 
speech intelligibility prediction by the NH model became less accurate 
(increased RMSE and decreased 𝜌).

Next, we investigated the performance by using only the non-

intrusive binaural EarModel without the additional acoustic features, 
as illustrated in Fig. 5b. A comparison of these results with those of the 
existing methods, as listed in Table 1, indicates that our EarModel could 
provide comparable results, with a slightly higher 𝜌 but a slightly lower 
RMSE.

Finally, Fig. 5c shows the speech intelligibility prediction model ob-

tained by extracting the maximum value of the speech intelligibility 
score of left and right signals. We further named this model as the ‘bet-

ter ear’ model. The results in Table 1 indicate that the better ear model 
is slightly less effective than the proposed method, which infers the 
speech intelligibility score with the NDF layer and could provide better 
speech intelligibility prediction.

4.4.3. Significance of additional acoustic features

In the last part of this study, we investigated the impact of incor-

porating additional acoustic features, i.e., the eGeMAPS and wavLM 
features. Our prior study [28] showed that the inclusion of both 
eGeMAPS and wavLM features significantly improved the prediction 
model. Specifically, we observed an approximate increase of more than 
15% in 𝜌 and an approximate decrease of over 10.00% in the RMSE 
for both the closed- and open-set tracks. The experimental results here 
agreed well with the previously reported results. We verified the sig-

nificance of the additional acoustic features by performing an analysis 
of variance (ANOVA) test between the proposed method’s results and 
the “EarModel only” results. The ANOVA results showed a statisti-

cally significant difference in the mean scores between the two groups 
(𝐹 (2, 2421) = 107.83, 𝑝 < 0.05). This F value indicates that the variation 
among the sample means was higher than the variation within the sam-

ples.

In this study, we enhanced the analysis by investigating which spe-

cific acoustic features contributed more to the prediction. Specifically, 
we used NDFs to identify the most important or informative acoustic 
features for predicting speech intelligibility. Fig. 6 shows the impor-
7

tance of each eGeMAPS feature in the prediction model. The NDF de-
termines the most important features or variables that contribute to a 
model’s accuracy. A feature’s importance is measured by how much it 
decreases the overall entropy or impurity of the decision trees when it 
is used to split nodes.

As seen in Fig. 6, the ten most important features were “mfcc3V_

sma3nz_stddevNorm,” “mfcc2_sma3_stddev-Norm,” “hammarbergIn-

dexV_sma3nz_amean,” “alpha-RatioUV_sma3nz_amean,” “loudness-

PeaksPerSec,” “loudness_sma3_amean,” “alphaRatioV_sma3nz_amean,” 
“mfcc3_sma3_stddevNorm,” “MeanUnvoicedSegment-Length,” and “Std-

devUnvoicedSegmentLength.” In summary, the most important acoustic 
features in the eGeMAPS were those based on mel-frequency cepstral 
coefficients (MFCCs), the Hammarberg index [35], the alpha ratio, 
and the loudness. MFCCs are commonly used features in speech pro-

cessing that capture the spectral characteristics of speech. Meanwhile, 
the Hammarberg index and alpha ratio are related to spectral balance 
parameters. Specifically, the Hammarberg index measures the signal in-

tensity difference between the maximum intensities that are present in 
a lower frequency range of 0 −2000 Hz and in a higher frequency range 
of 2000 −5000 Hz. The alpha ratio measures the ratio of the total energy 
present in a lower frequency range of 0 − 1000 Hz to that in a higher 
frequency range of 1000 − 5000 Hz. Finally, loudness is a factor that 
is highly related to speech intelligibility and estimates the perceived 
signal intensity from an auditory spectrum.

4.4.4. Evaluation grouped by listener, HA system, and interferer

Fig. 7 shows the average results for speech intelligibility prediction 
based on a hearing-impaired listener. Generally, the proposed method 
showed significant improvements in speech intelligibility prediction for 
all listeners. The 𝜌 value of the proposed method was approximately 0.4 
higher than that of the baseline system. This indicates that the proposed 
method can be used as a more accurate, reliable prediction model for 
hearing aid development. Despite the improvements, our method still 
had limitations in terms of predicting the speech intelligibility perceived 
by a particular listener, such as L0227. Our preliminary analysis of the 
data suggested that the other listeners exhibited normal hearing to mild 
hearing loss when hearing the low-frequency pure tones, as shown in 
their audiograms. In contrast, listener L0227 exhibited moderate to se-

vere hearing loss for pure tones from lower to higher frequencies, which 
might have caused difficulties in perceiving any target speech.

Next, Fig. 8 shows the distribution of the speech intelligibility pre-
diction result outcomes grouped by HA system. Ten HA systems were in-



Applied Acoustics 214 (2023) 109663C.O. Mawalim, B.A. Titalim, S. Okada et al.

Fig. 6. Importance of each eGeMAPS feature. The 𝑦-axis indicates the mean accuracy decrease when the corresponding feature was excluded. The more important 
the feature is, the more the accuracy decreases.

Fig. 7. Average speech intelligibility predictions as grouped by listener (closed-set track).
cluded in the data. These systems were labeled E001, E003, E005, E007, 
E009, E010, E13, E018, E019, and E021. When comparing the distri-

butions of the actual results and the model predictions, the proposed 
method was generally better than the baseline method. For instance, 
the distribution centers, spreads, and overall ranges of the proposed 
method were more similar to the actual SI than those obtained using 
the baseline method. Although some of the RMSEs of the predictions by 
the proposed method were higher than those of the baseline method, 
the results might be due to a narrow range around the most common 
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labels of the predicted values.
We also analyzed how the interferer type in a scene affected speech 
intelligibility perception. The CPC1 dataset has seven types of known 
interferers, namely, a vacuum cleaner, microwave, kettle, fan, dish-

washer, hairdryer, and washing machine. We excluded approximately 
300 test samples with unknown interferers. Fig. 9 shows the distribution 
of the speech intelligibility prediction results in terms of the interferer 
type. The results showed that our proposed method could provide more 
highly correlated prediction than the baseline methods for all types 
of known interferers. In particular, scenes with a vacuum cleaner or 

a hairdryer as the noise interferer caused more difficulties in predict-
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Fig. 8. Speech intelligibility prediction results as grouped by HA system (closed-set track).
ing speech intelligibility in hearing-impaired listeners. Meanwhile, the 
scenes with a fan caused the fewest difficulties (the lowest RMSEs).

5. Discussion

We discuss the key findings obtained in this study. We also discuss 
the progress of speech intelligibility prediction models for hearing aids 
and which issues we addressed. Finally, the limitations and future di-

rections are discussed.

From the experimental results, as shown in Subsection 4.4, we can 
discuss three main points.

• Design of auditory model for non-intrusive speech intelligibility 
prediction

This study demonstrates the use of an auditory periphery model 
for predicting speech intelligibility in hearing aids without a ref-

erence signal. Audiograms, which represent listeners’ hearing loss, 
were considered to model the OHC and IHC damage in the ears. The 
evaluation results of our proposed method that utilized the features 
extracted from the auditory model (‘EarModel only’ (b) in Table 2) 
showed a comparative performance with that of an earlier model 
that required a reference signal (HASPI in Table 1). Although we re-

ceived binaural signals, the model does not consider binaural cues 
in the human auditory system. A further investigation of these cues 
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will be addressed in future work.
• Significance of components and features in the proposed method

To justify the significance of each component and each feature set 
in the proposed method, we also carried out ablation tests and the 
one-way ANOVA test for statistical hypothesis testing. Each com-

ponent and feature set positively improved the performance of the 
proposed method. The improvement in correlation between the 
predicted scores and actual speech intelligibility scores from the 
listening test validates the model’s ability to capture the essential 
aspects of speech intelligibility.

Subsequently, we hypothesize that the combination of the spectral 
features from the hearing loss model and the additional acoustic 
features contributed to this improvement. Acoustic features related 
to speech recognition, such as wavLM features, have also been re-

ported to be beneficial in speech intelligibility prediction by other 
proposed methods in CPC1 [24,36].

• Robustness of the prediction under various listeners’ characteris-

tics, hearing aid systems, and interferers

This study shows that the proposed method that incorporates the 
features from the auditory model and acoustic parameters into the 
speech intelligibility prediction model has generally more robust 
performance than that of the baseline MBSTOI method in various 
settings, including listeners’ characteristics, hearing aid systems, 
and interferers (as shown in the experimental results in Subsubsec-
tion 4.4.4).
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Fig. 9. Speech intelligibility prediction results as grouped by interferer type (closed-set track).
The progress of speech intelligibility prediction models for hear-

ing aids has significantly advanced [1,4,17,37]. Earlier studies focused 
on the use of specific signal-related features, such as spectral features 
and modulation features [1,9,18,37]. Some recent studies, however, 
reported that machine learning models could outperform traditional 
approaches [21,22,24]. Unfortunately, the proposed machine learning 
models were generally sophisticated and difficult to explain (black box 
models). Moreover, these models depend heavily on the training data. 
Our proposed method attempted to balance the benefits of machine 
learning models while minimizing the disadvantages by integrating an 
auditory model and the common features used in machine learning-

based models. A neural decision forest was also utilized as a machine 
learning model to improve the explainability of a feature’s effective-

ness.

Although our proposed method showed promising results for pre-

dicting outcomes in the CPC1 dataset, we should note several limita-

tions. First, the CPC1 dataset was recorded under a specific scenario in 
a cuboid room with low to moderate simulated reverberation. Second, 
although the CPC1 dataset is the most comprehensive dataset involv-

ing hearing-impaired listeners to date, the proposed method might not 
be generalizable to other populations or to datasets recorded under dif-

ferent scenarios. Third, we only used hearing loss conditions based on 
pure-tone audiograms to develop the auditory model. Hearing loss con-

ditions are complex, and the audiograms might not have been sufficient 
to represent them. Further research in hearing loss modeling and ex-

periments with a wider variety of datasets will be crucial to extend the 
proposed method’s applicability.

6. Summary and future work

In this study, we developed a non-intrusive method that incorpo-

rates an auditory periphery model to predict speech intelligibility under 
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hearing loss conditions. The proposed method only requires binaural 
improved speech-perception-in-noise (SPIN) signals and an audiogram 
representing a given listener’s hearing loss. The features extracted for 
the speech intelligibility prediction model are the spectral envelopes 
and additional acoustic features (eGeMAPS and wavLM). The model 
was constructed using a two-dimensional CNN module combined with 
an NDF layer. To evaluate the proposed method, the CPC1 dataset was 
used with three evaluation metrics, the Pearson correlation coefficient, 
RMSE, and coefficient of determination. A comparative analysis of mul-

tiple methods was performed to further evaluate the proposed method. 
The experimental results showed that our method outperformed the 
other methods for both the closed- and open-set tracks of the CPC1 
dataset.

We also performed an ablation study to analyze the auditory model 
performance. These results demonstrated that each component in the 
proposed auditory model could positively contribute to improving 
speech intelligibility prediction. The additional acoustic features also 
significantly improved the prediction results. For future directions, we 
will investigate a better binaural processing model for more realistic 
scenes, and we aim to incorporate the proposed method in hearing aid 
development.
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